Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-08-05T07:26:48.636Z Has data issue: false hasContentIssue false

Juliformian millipedes from the Lower Devonian of Euramerica: Implications for the timing of millipede cladogenesis in the Paleozoic

Published online by Cambridge University Press:  11 August 2017

Heather M. Wilson*
Affiliation:
Department of Geology and Geophysics, Kline Geology Laboratory, Yale University, P.O. Box 208109, New Haven, Connecticut 06520,

Abstract

Two new xyloiuloid millipedes (Diplopoda: Chilognatha: Juliformia) are described and placed in the new family Gaspestriidae: Gaspestria genselorum n. gen and sp. from the Emsian of Québec and New Brunswick and Sigmastria dilata n. gen. and sp. from the Pragian of the Midland Valley of Scotland. These new millipedes extend the stratigraphic range of xyloiuloid millipedes, which previously were only described from the Pennsylvanian of Europe and North America. All xyloiuloid millipede families are placed within the superfamily Xyloiuloidea which is left incertae sedis within Juliformia due to a lack of preservation of diagnostic characters that would allow placement within an extant order. The presence in the Lower Devonian of the superorder Juliformia, universally agreed among diplopod taxonomists to represent the most derived clade of Diplopoda, indicates that most of millipede cladogenesis leading to high-rank extant clades had to have occurred by this time, much earlier than previously indicated by the fossil record. A stratocladogram for Myriapoda is constructed, and in combination with data from the plant fossil record and nuclear protein-encoding genes, new hypotheses regarding timing of millipede high-rank cladogenesis in the Paleozoic are formulated. These include terrestrialization of Diplopoda no later than the Ordovician along with the origin of the lineage leading to Penicillata and Arthropleuridea, followed by a period of relative stasis until the Middle Silurian, at which point there was a rapid radiation of Diplopoda, producing most of the high-rank clades by the Lower Devonian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, J. E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Philosophical Transactions of the Royal Society of London, B309:227237.Google Scholar
Ami, H. M. 1900. Synopsis of the geology of Canada; being a summary of the principal terms employed in Canadian geological nomenclature. Proceedings and Transactions of the Royal Society of Canada, 6:187225.Google Scholar
Anderson, J. M., and Bignell, D. E. 1980. Bacteria in the food, gut contents and faeces of the litter-feeding millipede Glomeris marginata (Villers). Soil Biology and Biochemistry, 12:251254.CrossRefGoogle Scholar
Anderson, L. I., Poschmann, M., and Brauckmann, C. 1998. On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 2. The synziphosurine Willwerathia . Paläontologische Zeitschrift, 72: 325336.CrossRefGoogle Scholar
Anderson, L. I., Dunlop, J. A., Eager, R. M. C., Horrocks, C. A., and Wilson, H. M. 1999. Soft-bodied fossils from the roof shales of the Wigan Four Foot coal seam, Westhoughton, Lancashire, UK. Geological Magazine, 135:321329.CrossRefGoogle Scholar
Andrews, H. N., Gensel, P. G., and Kasper, A. E. 1975. A new fossil plant of probable intermediate affinities (Trimerophyte-Progymnosperm). Canadian Journal of Botany, 53:17191728.CrossRefGoogle Scholar
Attems, C. G. 1926. Myriopoda, p. 1402. In Handbuch der Zoologie. Vol. 4. W. De Gruyter, Berlin.Google Scholar
Ax, P. 1999. Das System der Metazoa II. Ein Lehrbuch der Phylogenetischen Systematik. Urban and Fischer, München, 383 p.Google Scholar
Bacetti, B., Burrini, A. G., Dallai, R., and Pallini, V. 1979. Recent work in myriapod spermatology (The spermatozoon of Arthropoda XXXI), p. 97104. In Camatini, M. (ed.), Myriapod Biology. Academic Press, London.Google Scholar
Bachofen-Echt, A. 1942. Ueber die Myriapoden des Bernsteins. Palaeobiologica, 7:394403.Google Scholar
Bachofen-Echt, A. 1949. Der Bernstein und Seine Einschlüsse. Springer-Verlag, Wein, 204 p.Google Scholar
Banks, H. P., Bonamo, P. M., and Grierson, J. P. 1972. Leclercqia complexa gen. et sp. nov., a new lycopod from the late Middle Devonian of eastern New York. Review of Palaeobotany and Palynology, 14:1940.Google Scholar
Bluck, B. J. 2000. Old Red Sandstone basins and alluvial systems of Midland Scotland, p. 417437. In Friend, P. F. and Williams, B. P. J. (eds.), New Perspectives on the Old Red Sandstone. Geological Society Special Publication, 180, London.Google Scholar
Brady, L. F. 1947. Invertebrate tracks from the Coconino Sandstone of northern Arizona. Journal of Paleontology, 21:466472.Google Scholar
Brauckmann, C., and Kemper, M. 1985. Ein Tausendfüßler (Myriapoda:?Archipolypoda) aus dem Namurium B von Hagen-Vorhalle (unt. Ober-Karbon; West-Deutschland). Dortmunder Beiträge zur Landeskunde: Naturwissenschaftliche Mitteilungen, 19:6569.Google Scholar
Budd, G. E., Högström, A. E. S., and Gogin, I. 2001. A myriapod-like arthropod from the Upper Cambrian of East Siberia. Paläontologische Zeitschrift, 75:3741.CrossRefGoogle Scholar
Burke, J. J. 1979. A new millipede genus, Myriacantherpestes (Diplopoda, Archipolypoda) and a new species, Myriacantherpestes bradebirksi, from the English Coal Measures. Kirtlandia, 30:124.Google Scholar
Cant, D. J., and Walker, R. G. 1976. Development of a braided-fluvial facies model for the Devonian Battery Point Sandstone, Québec. Canadian Journal of Earth Sciences, 12:102119.Google Scholar
Carcamo, H. A., Abe, T. A., Prescott, C. E., Holl, F. B., and Chanway, C. P. 2000. Influence of millipedes on litter decomposition, N mineralization, and microbial communities in a coastal forest in British Columbia, Canada. Canadian Journal of Forest Research, 30:817826.Google Scholar
Cockerell, T. D. A. 1907. Some fossil arthropods from Florissant, Colorado. Bulletin of the American Museum of Natural History, 23:605616.Google Scholar
Cook, O. F. 1895. Introductory note on the families of Diplopoda, p. 19. In Cook, O. F. and Collins, G. N. (eds.), The Craspedosomatidae of North America. Annals of the New York Academy of Sciences. Vol. 9. New York Academy of Sciences, New York.Google Scholar
Dawson, J. W. 1859. On fossil plants from the Devonian rocks of Canada. Quarterly Journal of the Geological Society of London, 15:477488.Google Scholar
Dawson, J. W. 1860. On a terrestrial mollusk, a chilognathous myriapod, and some new species of reptiles from the coal formation of Nova Scotia. Geological Society of London Quarterly Journal, 16:268277.CrossRefGoogle Scholar
Dawson, J. W. 1873. Impressions and footprints of aquatic animals and imitative markings, on Carboniferous rocks. American Journal of Science, 105:1624.Google Scholar
Dzik, J. 1975. Spiroboloid millipedes from the Late Cretaceous of the Gobi Desert, Mongolia. Palaeontologia Polonica, 33:1724.Google Scholar
Dzik, J. 1981. An Early Triassic millipede from Siberia and its evolutionary significance. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1981(7):395404.CrossRefGoogle Scholar
Edgecombe, G. D. 1998a. Devonian terrestrial arthropods from Gondwana. Nature, 394:172175.Google Scholar
Edgecombe, G. D. 1998b. Early myriapodous arthropods from Australia, Maldybulakia from the Devonian of New South Wales. Records of the Australian Museum, 50:293313.Google Scholar
Edgecombe, G. D. 2004. Morphological data, extant Myriapoda, and the myriapod stem-group. Contributions to Zoology, 73:207252.CrossRefGoogle Scholar
Edgecombe, G. D., and Giribet, G. 2002. Myriapod phylogeny and the relationships of Chilopoda, p. 143168. In Llorente Bousquets, J., Morrone, J. J., and Ponce Ulloa, H. (eds.), Biodiversidad, Taxonomía y Biogeographia de Artrópodes de México: Hacia una Síntasis de su Conocimiento. Prensas de Ciencias, Universidad Nacional Autómoma de México, Mexico City.Google Scholar
Edwards, D., and Feehan, J. 1980. Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature, 287:4142.CrossRefGoogle Scholar
Edwards, D., and Wellman, C. H. 2001. Embryophytes on land: The Ordovician to Lochkovian (Lower Devonian) record, p. 328. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade the Land. Columbia University Press, New York.Google Scholar
Enghoff, H. 1984. Phylogeny of millipedes—a cladistic analysis. Zeitschrift für zoologische systematic Evolutionsforschung, 22:826.CrossRefGoogle Scholar
Enghoff, H. 1990. The ground-plan of chilognathan millipedes (external morphology), p. 121. In Minelli, A. (ed.), Proceedings of the 7th International Congress of Myriapodology. E. J. Brill, Leiden.Google Scholar
Enghoff, H., Dohle, W., and Blower, J. G. 1993. Anamorphosis in millipedes (Diplopoda)—the present state of knowledge with some developmental and phylogenetic considerations. Zoological Journal of the Linnean Society, 109:103234.Google Scholar
Fayers, S. 2003. The biota and palaeoenvironments of the Windyfield Chert, Early Devonian, Rhynie, Scotland. Unpublished , , 430 p.Google Scholar
Förster, R. 1973. Ein Diplopoden-fund aus dem Oberkarbon des Saarlandes. Neues Jahrbuch für Geologie und Paläontologie, Monatschefte, 2:6771.Google Scholar
Frey, R. G., Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Fritsch, A. 1883. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens. Vol. 1. F. Rivnác, Prague.Google Scholar
Fritsch, A. 1899. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens. Vol. 4. Prague.Google Scholar
Gall, J.-C., and Grauvogel, L. 1964. Un arthropode peu connue le genre Euthycarcinus Handlirsch. Annales de Paléontologie, 50:318.Google Scholar
Gamba, C. A. 1990. Sedimentology and tectonic implications of the Pointe la Nim and Campbellton Formations, western Chaleur Bay, Maritime Canada. Unpublished , .Google Scholar
Gamba, C. A., and Rust, B. R. 1989. Sedimentology of the Campbellton and La Garde formations of western Chaleur Bay; an initial response to Acadian tectonism. Geological Association of Canada and Mineralogical Association of Canada Annual Meeting Program with Abstracts, 14:113.Google Scholar
Gensel, P. G. 1976. Renalia hueberi, a new plant from the Lower Devonian of Gaspé. Review of Palaeobotany and Palynology, 22:1937.Google Scholar
Gensel, P. G., and Andrews, H. N. 1984. Plant Life in the Devonian. Praeger, New York, 380 p.Google Scholar
Gensel, P. G., Kasper, A. E., and Andrews, H. N. 1969. Kaulangiophyton, a new genus of plants from the Devonian of Maine. Torrey Botanic Club Bulletin, 96:265276.Google Scholar
Grimaldi, D. A. 1996. Amber, Window to the Past. Harry N. Abrams, in association with the American Museum of Natural History, New York, 216 p.Google Scholar
Grimaldi, D. A., Engel, M. S., and Nascimbene, P. C. 2002. Fossiliferous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361: 172.Google Scholar
Hannibal, J. T. 2000. Hexecontasoma, a new helminthomorph millipede (Hexacontasomatidae n. fam.) from the Mazon Creek, Illinois, fauna (Carboniferous, North America), p. 1935. In Wytwer, J. and Golovatch, S. (eds.), Progress in Studies on Myriapoda and Onycophora. Fragmenta Faunistica, 43 (suppl.).Google Scholar
Hannibal, J. T., and Feldmann, R. M. 1981. Systematics and functional morphology of oniscomorph millipedes (Arthropoda: Diplopoda) from the Carboniferous of North America. Journal of Paleontology, 55: 730746.Google Scholar
Hannibal, J. T., Lerner, A. J., Zeigler, K. E., and Lucas, S. G. 2004. A juliform milliped from the Upper Pennsylvanian (Virgilian) Bursum Formation, Carrizo Arroyo, of central New Mexico. New Mexico Museum of Natural History and Science Bulletin, 25:211213.Google Scholar
Hilken, G. 1998. Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verhandlungen der naturwissenschaftlichen Vereins in Hamburg (NF), 37:594.Google Scholar
Hoffman, R. L. 1963. New genera and species of Upper Paleozoic Diplopoda. Journal of Paleontology, 37:167174.Google Scholar
Hoffman, R. L. 1969. Myriapoda, exclusive of Insecta, p. R572R606. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Vol. 2. Pt. R. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Holland, C. H., and Richardson, J. B. 1977. The British Isles, p. 3544. In The Siluro-Devonian Boundary. I.U.G.S. series A, no. 5.Google Scholar
Hopkin, S. P., and Read, H. J. 1992. The Biology of Millipedes. Oxford University Press, Oxford, 233 p.Google Scholar
Hou, X.-G. 1987. Two new arthropods from Lower Cambrian, Chengjiang, eastern Yunnan. Acta Palaeontologica Sinica, 26:236256.Google Scholar
Hou, X.-G., and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, Southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X.-G., and Bergström, J. 1998. Three additional arthropods from the early Cambrian Chengjiang Fauna, Yunnan, Southwest China. Acta Palaeontologica Sinica, 37:395401, pls. 1, 2.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China. Blackwell Publishing, Malden, Massachusetts, 233 p.Google Scholar
Jamieson, B. G. M. 1987. The Ultrastructure and Phylogeny of Insect Spermatozoa. Cambridge University Press, Cambridge, 320 p.Google Scholar
Jeram, A. J., Selden, P. A., and Edwards, D. 1990. Land animals in the Silurian: Arachnids and myriapods from Shropshire, England. Science, 250:658661.Google Scholar
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L., and Tunnicliff, S. P. 1994. Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake District. Geological Magazine, 131:395406.Google Scholar
Jordan, H., and Meyer, H. v. 1854. Ueber die Crustaceen der Steinkohlenformation von Saarbrücken. Palaeontographica A, 4:115.Google Scholar
Kaneko, N. 1999. Effect of millipede Parafontaria tonominea Attems (Diplopoda: Xystodesmida) adults on soil biologica activities: A microcosm experiment. Ecological Research, 14:271279.CrossRefGoogle Scholar
Keilbach, R. 1982. Bibliographie und Liste der Arten tierischer Einschlüsse in fossilen Harzen sowie iher Aufbewahrungsorte. Deutsche entomologische Zeitschrit N. F., 29:129286,301–491.Google Scholar
Klasse, K.-D., and Kristensen, N. P. 2001. The ground plan and affinities of hexapods: Recent progress and open problems. Annales de la Société Entomologique de France, 37:265298.Google Scholar
Labandeira, C. C., Beall, B. S., and Hueber, F. M. 1988. Early insect diversification; evidence from a Lower Devonian bristletail from Québec. Science, 242:913916.Google Scholar
Latreille, P. A. 1802–1803. Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes; ouvrage faisant suite aux oeuvres de Leclerc de Buffon, et partie du cours complet d'histoire naturelle rédigé par C. S. Sonnini. Vol. 2. F. Dufart, Paris, 467 p.Google Scholar
Lavender, K., and Wellman, C. H. 2002. Lower Devonian spore assemblages from the Arbuthnott Group at Canterland Den in the Midland Valley of Scotland. Review of Palaeobotany and Palynology, 118: 157180.Google Scholar
Lawrence, D. A., and Rust, B. R. 1988. The Devonian clastic wedge of eastern Gaspé and the Acadian orogeny, p. 5364. In McMillan, N. J., Embry, A. F., and Glass, D. J. (eds.), Devonian of the World. Vol. II. Canadian Society of Petroleum Geologists, Memoir 7.Google Scholar
Lawrence, J. M., and Samways, M. J. 2003. Litter breakdown by the Seychelles giant millipede and the conservation of soil processes on Cousine Island, Seychelles. Biological Conservation, 113:125132.Google Scholar
MacNaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D. 2002. First steps on land: Arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30:391394.Google Scholar
Manton, S. M. 1956. The evolution of arthropodan locomotory mechanisms, Pt. 5, The structure, habits and evolution of the Pselaphognatha (Diplopoda). Journal of the Linnean Society (Zoology), 43:153187, pl. 5.Google Scholar
Manton, S. M. 1961. The evolution of arthropodan locomotory mechanisms, Pt. 7, Functional requirements and body design in Colobognatha (Diplopoda), together with a comparative account of diplopod burrowing techniques, trunk musculature and segmentation. Journal of the Linnean Society (Zoology), 44:383461.Google Scholar
Manton, S. M. 1977. The Arthropoda. Clarendon Press, Oxford, 527 p.Google Scholar
Martill, D. M., and Barker, M. J. 1998. A new centipede (Arthropoda, Chilopoda) from the Crato Formation (Lower Cretaceous, Aptian) of N. E. Brazil. Neues Jahrbuch für Paläontologie Abhandlungen, 207: 395404.CrossRefGoogle Scholar
Matthew, G. F. 1894. On the organic remains of the Little River Group, No. III. Transactions of the Royal Society of Canada, 1894:101110, pl. 1.Google Scholar
McGregor, D. C. 1973. Lower and Middle Devonian spores of eastern Gaspé, Canada. I. Systematics. Palaeontographica, 142B:177.Google Scholar
McGregor, D. C. 1977. Lower and Middle Devonian spores of eastern Gaspé, Canada. II. Biostratigraphy. Palaeontographica, 163B: 111142.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Preliminary notice of a scorpion, a Eurypterus? And other fossils, from the coal-measures of Illinois. American Journal of Science, second series, 46:2527.Google Scholar
Miner, R. W. 1926. A fossil myriapod of the genus Parajulus from Florissant, Colorado. American Museum Novitates, 219:15.Google Scholar
Mundel, P. 1979. The centipedes (Chilopoda) of the Mazon Creek, p. 361378. In Niteki, M. H. (ed.), Mazon Creek Fossils. Academic Press, New York.Google Scholar
Mundel, P. 1981. New and little known fossil myriapods from the Mazon Creek area of Illinois (Carboniferous, Westphalian D). Fifth International Congress of Myriapodology, Radford, Virginia, Abstracts, p. 20.Google Scholar
Mykura, W. 1983. Old Red Sandstone, p. 205251. In Craig, G. Y. (ed.), Geology of Scotland. John Wiley & Sons, New York.Google Scholar
Nindel, F. 1955. Die tierischen Reste aus dem Karbon von Karl-Marx-Stadt und Hainischen i. S. Geologie, 4:673694.Google Scholar
Paulus, H. F. 2000. Phylogeny of Myriapoda-Crustacea-Insecta: A new attempt using photoreceptor structure. Journal of Zoological Systematics and Evolutionary Research, 38:189208.Google Scholar
Peach, B. N. 1882. On some fossil myriapods from the Lower Old Red Sandstone of Forfarshire. Royal Physical Society, 7:177188.Google Scholar
Pisani, D., Poling, L. L., Lyons-Weiler, M., and Hedges, S. B. 2004. The colonization of land by animals: Molecular phylogeny and divergence times among arthropods. BioMed Central Biology, 2:1 (http://www.biomedcentral.com/1741-7007/2/1).Google Scholar
Poinar, G. O. Jr. 1992. Life in Amber. Stanford University Press, Stanford, 350 p.Google Scholar
Poinar, G. O. Jr., and Edwards, C. A. 1995. First description of a fossil symphylan, Scutigerella dominicana sp. n. (Scutigerellidae: Symphyla), in Dominican amber. Experientia, 51:391394.Google Scholar
Pramanik, R., Sarkar, K., and Joy, V. C. 2001. Efficiency of detritivore arthropods in mobilizing nutrients from leaf litter. Tropical Ecology, 42:5158.Google Scholar
Racheboeuf, P. R., Hannibal, J. T., and Vannier, J. 2004. A new species of the diplopod Amynilyspes (Oniscomorpha) from the Stephanian Lagerstätte of Montceau-les-mines, France. Journal of Paleontology, 76:221229.Google Scholar
Regier, J. C., and Shultz, J. W. 2001. A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-encoding genes. Zoological Journal of the Linnean Society, 132:469486.Google Scholar
Regier, J. C., Wilson, H. M., and Shultz, J. W. 2005. Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Molecular Phylogenetics and Evolution, 34:147158.Google Scholar
Retallack, G. J. 2001. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology, 44:209235.Google Scholar
Retallack, G. J., and C. R. Feakes. 1987. Trace fossil evidence for Late Ordovician animals on land. Science, 235:6163.Google Scholar
Richardson, J. B. 1967. Some British Lower Devonian spore assemblages and their stratigraphic significance. Revue of Palaeobotany and Palynology, 1:111129.Google Scholar
Richardson, J. B., and McGregor, D. C. 1986. Silurian and Devonian spore zones of the Old Red Sandstone continent and adjacent areas. Geological Survey of Canada Bulletin, 364:179.Google Scholar
Richardson, J. B., J. H. Ford, and F. Parker. 1984. Miospores, correlation and age of Scottish Lower Old Red Sandstone sediments from the Strathmore region (Fife and Angus). Journal of Micropaleontology, 3:109124.Google Scholar
Robison, R. A., and Wiley, E. O. 1995. A new arthropod, Meristosoma: More fallout from the Cambrian Explosion. Journal of Paleontology, 69:447459.Google Scholar
Röbler, R., and Schneider, J. W. 1997. Eine bemerkenswerte Paläo-biocoenose im Unterkarbon Mitteleuropas—Fossilführung und Paläoenvironment der Hainichen-Subgruppe (Erzgebirge-Becken). Veröffentlichungen des Museums für Naturkunde Chemnitz, 20:544.Google Scholar
Rust, B. R. 1984. Proximal braidplane deposits in the Middle Devonian Malbaie Formation of eastern Gaspé, Québec, Canada. Sedimentology, 31:675695.Google Scholar
Santiago-Blay, J. A., and Poinar, G. O. Jr. 1992. Millipedes from Dominican amber, with the description of two new species (Diplopoda: Siphonophoridae) of Siphonophora . Annals of the Entomological Society of America, 85:363369.Google Scholar
Schneider, J. W. 1983. Euthycarcinus martensi n. sp.—ein neuer Arthropode aud dem mitteleuropaïschen Rotliegenden (Perm) mit Bermerkungen zu limnischen Arthropoden-Assoziationen. Freiberger Forschungshefte, series C, 384:4957.Google Scholar
Schneider, J. W., and Werneburg, R. 1998. Arthropleura und Diplopoda (Arthropoda) aus dem Unter-Rotliegend (Unter-Perm, Assel) des Thüringer Waldes (Südwest-Saale-Senke). Veröffentlichungen des Naturhistorisches Museum Schleusingen, 13:1936.Google Scholar
Schram, F. R., and Rolfe, W. D. I. 1982. New euthycarcinoid arthropods from the Upper Pennsylvanian of France and Illinois. Journal of Paleontology, 56:14341450.Google Scholar
Schultka, S. 1991. Ester Nachweiss der Gattung Euthycarcinus (Arthropoda) aus dem Oberkarbon von Ibbenbüren (Nordrhein-Westfalen, Deutschland). Paläontologische Zeitschrift, 65:319332.Google Scholar
Schweigert, V. G., and Dietl, G. 1997. Ein fossiler Hundertfüssler (Chilopoda, Geophilida) aus dem Nusplinger Plattenkalk (Oberjura, Südwestdeutschland). Stuggarter Beiträge für Naturkunde B (Geologie und Paläontologie), 254:111.Google Scholar
Scotese, C. R., and McKerrow, W. S. 1990. Revised world maps and introductions, p. 121. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir, 12.Google Scholar
Scudder, S. H. 1882. Archipolypoda, a subordinal type of spined myriapods from the Carboniferous Formation. Memoirs of the Boston Society of Natural History, 3:143182.Google Scholar
Scudder, S. H. 1890. New Carboniferous Myriapoda from Illinois. Memoirs of the Boston Society of Natural History, 4:417442, pls. 33–38.Google Scholar
Shear, W. A. 1981. Two fossil millipedes from the Dominican amber (Diplopoda: Chytodesmidae, Siphonophoridae). Myriapodologica, 1: 5154.Google Scholar
Shear, W. A. 1987. Myriapod fossils from the Dominician amber. Myriapodologica, 7:43.Google Scholar
Shear, W. A., and Bonamo, P. M. 1988. Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. American Museum Novitates, 2927:130.Google Scholar
Shear, W A., and Selden, P. A. 1995. Eoarthropleura (Arthropoda, Arthropleurida) from the Silurian of Britain and the Devonian of North America. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 196:347375.Google Scholar
Shear, W. A., Gensel, P. G., and Jeram, A. J. 1996. Fossils of large terrestrial arthropods from the Lower Devonian of Canada. Nature, 384:555557.Google Scholar
Shear, W. A., Jeram, A. J., and Selden, P. A. 1998. Centiped legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. American Museum Novitates, 3231:116.Google Scholar
Sierwald, P., Shear, W. A., Shelley, R. M., and Bond, J. E. 2003. Millipede phylogeny revisited in the light of the enigmatic order Siphoniulida. Journal of Zoological Systematics and Evolutionary Research, 41:8799.Google Scholar
Størmer, L. 1969. Eurypterids from the Lower Devonian of Willwerath, Eifel. Senckenbergiana Lethaea, 50:2135.Google Scholar
Strother, P. K., Al-Hajri, S. A., and Traverse, A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology, 24:5558.Google Scholar
Strother, P. K., Wood, G. D., Taylor, W. A., and Beck, J. H. 2004. Middle Cambrian cryptospores and the origin of land plants. Memoirs of the Association of Australasian Palaeontologists, 29:99113.Google Scholar
Tesakov, A. S., and Alekseev, A. S. 1992. Myriapod-like arthropods from the Lower Devonian of central Kazakhstan. Paleontological Journal, 26:1823.Google Scholar
Tesakov, A. S., and Alekseev, A. S. 1998. Maldybulakia—new name for Lophodesmus Tesakov & Alekseev, 1992 (Arthropoda). Paleontological Journal, 32:49.Google Scholar
Trewin, N. H., and Davidson, R. G. 1996. An Early Devonian lake and its associated biota in the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 86:233246.CrossRefGoogle Scholar
Wellman, C. H. 1993. A Lower Devonian sporomorph assemblage from the Midland Valley of Scotland. Journal of Micropalaeontology, 12: 4766.Google Scholar
Wellman, C. H., and Gray, J. 2000. The microfossil record of early land plants. Philosophical Transactions of the Royal Society of London, B355:717732.Google Scholar
Wellman, C. H., Osterloff, P. L., and Mohiuddin, U. 2003. Fragments of the earliest land plants. Nature, 425:282285.Google Scholar
White, C. D. 1929. Flora of the Hermit Shale, Grand Canyon, Arizona. Publications of the Carnegie Institution of Washington, 405, 221 p.Google Scholar
Wilson, H. M. 1999. Palaeobiology of the Arthropleuridea. Unpublished , , 306 p.Google Scholar
Wilson, H. M. 2001. First Mesozoic scutigeromorph centipede, from the Lower Cretaceous of Brazil. Palaeontology, 44:489495.Google Scholar
Wilson, H. M. 2003a. A new scolopendromorph centipede (Myriapoda: Chilopoda) from the Lower Cretaceous (Aptian) of Brazil. Journal of Paleontology, 77:7377.Google Scholar
Wilson, H. M. 2003b. Functional morphology of locomotion in the giant Paleozoic millipede Arthropleura: Insights from trace fossils and kinematics of locomotion in extant millipedes. Geological Society of America Abstracts with Programs, 34(7):538.Google Scholar
Wilson, H. M. 2005a. A new genus of archipolypodan millipede from the Coseley Lagerstätte (Upper Carboniferous, UK). Palaeontology, 48: 10971100.CrossRefGoogle Scholar
Wilson, H. M. 2005b. Zosterogrammida, a new order of millipedes from the mid-Silurian of Scotland and the Upper Carboniferous of Euramerica. Palaeontology, 48:11011110.Google Scholar
Wilson, H. M., and Almond, J. E. 2001. New euthycarcinoids and an enigmatic arthropod from the British Coal Measures. Palaeontology, 44:143156.Google Scholar
Wilson, H. M., and L. I. Anderson. 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Archipolypoda) from Scotland. Journal of Paleontology, 78:169184.Google Scholar
Wilson, H. M., and Hannibal, J. T. 2005. Taxonomy and trunk-ring architecture of pleurojulid millipedes (Diplopoda: Chilognatha: Pleu-rojulida) from the Pennsylvanian of Europe and North America. Journal of Paleontology, 79(6): 11051119.Google Scholar
Wilson, H. M., and Shear, W. A. 2000. Microdecemplicida, a new order of minute arthropleurideans (Arthropoda: Myriapoda) from the Devonian of New York State, U.S.A. Transactions of the Royal Society of Edinburgh: Earth Sciences, 90:351375.Google Scholar
Wilson, H. M., Daeschler, E. B., and Desbiens, S. 2005. New flat-backed millipedes (Diplopoda: Archipolypoda) from the Upper Devonian of North America. Journal of Paleontology, 79:737743.Google Scholar
Wilson, R. A., Burden, E. T., Bertrand, R., Asselin, E., and McCracken, A. D. 2004. Stratigraphy and tectono-sedimentary evolution of the Late Ordovician to Middle Devonian Gaspé Belt in northern New Brunswick: Evidence from the Restigouche area. Canadian Journal of Earth Science, 41:527551.Google Scholar
Witzke, B. J. 1990. Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euramerica, p. 5773. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society, London, Memoirs, 12.Google Scholar
Ziegler, P. A. 1988. Laurussia; the old red continent, p. 1548. In McMillan, N. J., Embry, A. F., and Glan, D. J. (eds.), Devonian of the World. Proceedings of the Second International Symposium on the Devonian System. Canadian Society of Petroleum Geologists Memoir 14, Vol. 1.Google Scholar