Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T13:06:24.521Z Has data issue: false hasContentIssue false

Paleoecology and distribution of the Early Cambrian rostroconch Watsonella crosbyi Grabau

Published online by Cambridge University Press:  19 May 2016

Ed Landing*
Affiliation:
New York State Geological Survey, The State Education Department, Albany 12230

Abstract

Watsonella crosbyi Grabau, 1900, a senior synonym of Heraultipegma varensalense (Cobbold, 1935) and H. yannense He and Yang, 1982, is the oldest known rostroconch. The species ranges through most of the Early Cambrian and has been recovered from temperate siliciclastic (Avalon Platform) and tropical carbonate (south China, Mongolia?, southern France) environments. Watsonella crosbyi occurs through approximately 880 meters of the sub-trilobitic Lower Cambrian of southeastern Newfoundland. Its lowest occurrence corresponds to the first appearance of relatively diverse small shelly faunas of the pre-Tommotian Watsonella crosbyi Zone (new).

The general form of Watsonella crosbyi conchs (laterally compressed, prosogyrate, elongate posterior, subdued comarginal growth lines, very thin shell with anterior and posterior gapes) is similar to that in a number of larger burrowing pelecypods, but this does not rule out other benthic habits. However, recovery of locally common in situ conchs (plane of commissure vertical, long axis subhorizontal) in the lower and upper parts of its stratigraphic range in southeastern Newfoundland corroborates an infaunal life habit for the species. The animal is a prominent element in faunas from offshore, cohesive, siliciclastic mudstones but also occurs in calcareous nodule-rich mudstones, shell hash limestones, and, infrequently, in peritidal algalaminate limestones. A phylogenetic sequence from laterally compressed monoplacophorans to early ribeiroid rostroconchs and leading to the oldest pelecypods was completed by the middle Early Cambrian and involved infaunal mollusks.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, R. C. 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. Journal of Geology, 90:7995.Google Scholar
Barrande, J. 1881. Systeme Silurien du centre de la Boheme, Volume 6, Acephales. Paris and Prague, 342 p.Google Scholar
Bengtson, S., and Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20:525536.Google Scholar
Billings, E. 1872. On some fossils from the Primordial rocks of Newfoundland. The Canadian Naturalist, 6:213222.Google Scholar
Blayac, J., and Thoral, M. 1931. Contribution a l'etude du Georgian de la Montagne Noire. Bulletin de la Societe Geologique de France, 5th Ser., 1:561571.Google Scholar
Bokuniewicz, H. J., and Gordon, R. B. 1980. Sediment transport and deposition in Long Island Sound. Advances in Geophysics, 22:69106.Google Scholar
Bonem, R. M. 1982. Morphology and paleoecology of the Devonian rostroconch genus Bigalea. Journal of Paleontology, 56:13621374.Google Scholar
Brasier, M. D. 1984. Microfossils and small shelly fossils from the Lower Cambrian Hyolithes Limestone at Nuneaton, English Midlands. Geological Magazine, 121:229253.CrossRefGoogle Scholar
Brasier, M. D., and Singh, P. 1987. Microfossils and Precambrian–Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geological Magazine, 124:323345.Google Scholar
Cobbold, E. S. 1935. Lower Cambrian faunas from Hérault, France. The Annals and Magazine of Natural History, 16:2548.Google Scholar
Cox, L. R., Nuttall, C. P., and Trueman, E. R. 1969. General features of Bivalvia, p. N3N129. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Driscoll, E. G. 1975. Sediment-animal-water interaction, Buzzards Bay, Massachusetts. Journal of Marine Research, 33:275302.Google Scholar
Grabau, A. W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society of Natural History, 4:601694.Google Scholar
Groom, T. 1902. The sequence of the Cambrian and associated beds of the Malvern Hills. Quarterly Journal of the Geological Society of London, 58:89135.Google Scholar
He, T. G., and Yang, X.-H. 1982. Lower Cambrian Meishucun Stage of the western Yangtze stratigraphic region and its small shelly fossils. Bulletin of the Chendu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 3:6995(in Chinese).Google Scholar
Holl, H. B. 1865. On the geological structure of the Malvern Hills and adjacent districts. Quarterly Journal of the Geological Society of London, 21:72108.Google Scholar
Holm, G. 1893. Sveriges Kambrisk–Siluriska Hyolithidae och Conularidae. Sveriges Geologiska Undersokning, Afhandlingar och Uppsater 112, 172 p.Google Scholar
Johnson, R. J. E., and van der Voo, R. 1985. Middle Cambrian paleomagnetism of the Middle Cambrian Avalon terrane in Cape Breton Island, Nova Scotia. Tectonics, 4:629651.Google Scholar
Kauffman, E. G. 1969. Form, function, and evolution, p. N130205. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Kerber, M. 1988. Mikrofossilien auf Unterkambrischen Gesteinen der Montagne Noire. Paläontolographica Abteilung A, 202:127203.Google Scholar
Landing, E. 1988a. Trace fossils, small shelly fossils and the Precambrian–Cambrian boundary: a pre-meeting viewpoint, p. 13. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E. 1988b. Lower Cambrian of eastern Massachusetts: stratigraphy and small shelly fossils. Journal of Paleontology, 62:661695.Google Scholar
Landing, E., and Benus, A. P. 1988a. Stratigraphy of the Bonavista Group, southeastern Newfoundland: growth faults and the distribution of the sub-trilobitic Lower Cambrian, p. 5971. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., and Benus, A. P. 1988b. Cambrian depositional history and stratigraphy, Avalon–Bonavista region, southeastern Newfoundland. Geological Association of Canada Annual Meeting, St. John's, Field Trip Guidebook, Trip A3, Newfoundland Department of Mines, 50 p.Google Scholar
Landing, E., and Benus, A. P.Myrow, P., and Narbonne, G. M.In press. The Placentian Series: appearence of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology.Google Scholar
Landing, E., and Benus, A. P.Myrow, P., von Bitter, P. H., Benus, A. P., and Albanese, J. R. 1984. Oldest “tube worm”—algal mud mound associations (Lower Cambrian, eastern Newfoundland). Geological Society of America, Abstracts with Programs, 16:568.Google Scholar
Landing, E., and Benus, A. P.Myrow, P., Narbonne, G. M., Benus, A. P., and Myrow, P. 1988. Avalonian sub-trilobitic small shelly fossils: facies and diagenetic restrictions on the correlation of the lowest Cambrian, p. 1314. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Landing, E., and Benus, A. P.Myrow, P., Myrow, P., Benus, A. P., and Anderson, M. M. 1988. Faunas and depositional environments of the Upper Precambrian through Lower Cambrian, southeastern Newfoundland, p. 1858. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. New York State Museum Bulletin 463.Google Scholar
Linnarsson, J. G. O. 1872. Om några försteningar från Sveriges och Norges ‘Primordialzon.’ Ofversigt af Konglische Vetenskaps–Akademiens Förhandlingar, 6:789796.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., Ouyang, L., et al. 1982. The Sinian–Cambrian boundary in eastern Yunnan, China. Yunnan Institute of Geological Sciences, The People's Publishing House, Yunnan, 265 p. (in Chinese with English summary).Google Scholar
Matthews, S. C., and Missarzhevsky, V. V. 1975. Small shelly fossils of late Precambrian and Early Cambrian age: a review of recent work. Journal of the Geological Society of London, 131:289304.Google Scholar
Missarzhevsky, V. V. 1973. Konodontoobrazniye organismi iz pograninich sloev Kembriya i Dokembriya Sibiriskoy Platformy i Kazachstana, p. 5358. In Zhuravleva, I. T. (ed.), Problemi Paleontologii i Biostratigrafiya Nizhnego Kembriya Sibiri i dal'nego Vostoka. “Nauka,” Novosibirsk.Google Scholar
Missarzhevsky, V. V. 1974. Noviye dannie o drevneschich okamenelostyay rannego Kembriya Sibirskoy Platformy, p. 179189. In Zhuravleva, I. T. (ed.), Biostratigrafiya i Paleontologiya Nizhnego Kembriya Evropa i Sibirioi Asii. “Nauka,” Moscow.Google Scholar
Müller, K. J. 1975. “Heraultia” varensalensis COBBOLD (Crustacea) aus dem Unteren Kambrium, der älteste Fall von Geschlechts-dimorphismus. Paläontologisches Zeitschrift, 49:168180.Google Scholar
Myrow, P., Narbonne, G. M., and Hiscott, R. N. 1988. Storm-shelf and tidal deposits of the Chapel Island and Random Formations, Burin Peninsula: facies and trace fossils. Geological Association of Canada Annual Meeting, Field Trip Guidebook, Trip B6, Geological Association of Canada, Newfoundland Section, St. John's, 105 p.Google Scholar
Narbonne, G. M., Myrow, P., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:12771293.Google Scholar
Pojeta, J. Jr. 1978. The origin and early taxonomic diversification of pelecypods. Philosophical Transactions of the Royal Society of London B, 284:225246.Google Scholar
Pojeta, J. Jr. 1987. Class Rostroconchia, p. 359380. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Boston.Google Scholar
Pojeta, J. Jr., and Runnegar, B. 1976. The paleontology of rostroconch mollusks and the early history of the phylum Mollusca. U.S. Geological Survey Professional Paper 968, 88 p.Google Scholar
Pojeta, J. Jr., Morris, N. J., and Newell, N. D. 1972. Rostroconchia: a new class of bivalved mollusks. Science, 177:264267.Google Scholar
Rast, N., O'Brien, B. H., and Wardle, R. F. J. 1976. Relationships between Precambrian and Lower Palaeozoic rocks of the ‘Avalon Platform’ in New Brunswick, the northeast Appalachians and the British Isles. Tectonophysics, 30:315338.Google Scholar
Rhoads, D. C. 1970. Mass properties, stability and ecology of marine muds related to burrowing activity, p. 391406. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue 3, Seel House Press, Liverpool.Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Valkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidarov, A. D. 1969. The Tommotian Stage and the Cambrian Lower Boundary Problem. Amerind Publishing Co., New Delhi(1981 translation), 359 p.Google Scholar
Runnegar, B. 1978. Origin and evolution of the class Rostroconchia. Philosophical Transactions of the Royal Society of London, B, 284:319333.Google Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australian Paleontologists, 1:121144.Google Scholar
Runnegar, B., and Pojeta, J. Jr. 1985. Origin and diversification of the Mollusca, p. 157. In Trueman, E. R. and Clarke, M. R. (eds.), The Mollusca, Volume 10, Evolution. Academic Press, London.Google Scholar
Shaler, N. S., and Foerste, A. F. 1888. Preliminary description of North Attleboro fossils. Harvard Museum of Comparative Zoology Bulletin, 16:2741.Google Scholar
Singh, P., and Shukla, D. S. 1981. Fossils from the Lower Tal: their age and its bearing on the stratigraphy of Lesser Himalaya. Geoscience Journal, 11:156176.Google Scholar
Sokolov, B. S., and Zhuravleva, I. T. (eds.) 1983. Yarosnoe rasolenenie Nizhnego Kembriya Sibiri—Atlas okamenelostey. Izdatel'stvo “Nauka,” Moscow, 216 p.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia. Geological Society of America, Memoir 125, 296 p.Google Scholar
Stanley, S. M. 1975a. Why clams have the shape they have: an experimental analysis of burrowing. Paleobiology, 1:4858.Google Scholar
Stanley, S. M. 1975b. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annual Reviews of Earth and Planetary Sciences, 3:361385.Google Scholar
Stasek, C. R. 1972. The molluscan framework, p. 144. In Florkin, M. and Sheer, B. T. (eds.), Chemical Zoology 7 (Mollusca). Academic Press, New York.Google Scholar
Tevesz, M. J. S., and McCall, P. L. 1976. Primitive life habits and adaptive significance of the pelecypod form. Paleobiology, 2:183190.Google Scholar
Trueman, E. R. 1966. Bivalve mollusks: fluid dynamics of burrowing. Science, 152:523525.Google Scholar
Trueman, E. R., Brand, A. R., and Davis, P. 1966. The effect of substrate and shell shape on the burrowing of some common bivalves. Malacological Society of London, Proceedings, 37:97109.Google Scholar
Vail, P. R., Mitchum, R. M., and Thompsom, S. III. 1977. Seismic stratigraphy and global changes of sea level, Part 3: Relative changes in sea level from coastal onlap, p. 6381. In Payton, E. (ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, Memoir 26, 720 p.Google Scholar
Valentine, J. W., and Gertman, R. L. 1972. The primitive ecospace of the Pelecypoda. Geological Society of America, Abstracts with Programs, 4:646.Google Scholar
Villeneuve, J. 1920. Dipteres palearctiques noveau ou peu connus. Annuales du Societe Entomologique, 60:114120.Google Scholar
Vogel, K., and Gutman, W. F. 1980. The derivation of pelecypods: role of biomechanics, physiology and environment. Lethaia, 13:269275.Google Scholar
Voronin, Yu. L., Voronova, L. G., Grogor'ieva, N. V., Drozdova, N. A., Zhegallo, Ye. A., Zhuravleva, A. Yu., Ragoznia, A. L., Rozanov, A. Yu., Sautena, T. A., Sysoiev, V. A., and Fonin, V. D. 1982. Granitsa dokembriya i Kembriya v geosinclinal'nych oblasttyach (Opornya razez Salany–Gol, MHP). Somestnaya Sovetsko–Mongolskaya Paleontologischeskaya Ekspeditsiyo Trudy, Izdatel'stvo “Nauka,” Moscow, 250 p.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. 10th Annual Report of the U.S. Geological Survey, 574 p.Google Scholar
Xing, Y., Ding, Q., Luo, H., He, P., Wang, Y., et al. 1983. The Sinian–Cambrian boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, No. 10, Geological Publishing House, Beijing, 262 p.Google Scholar
Yu, W. 1987. Yangtze micromolluscan fauna in Yangtze region of China with notes on Precambrian–Cambrian boundary. Stratigraphy and Paleontology of Systematic Boundaries in China, 1:19275.Google Scholar