Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T01:40:58.286Z Has data issue: false hasContentIssue false

Ediacaran diversity and paleoecology from central Iran

Published online by Cambridge University Press:  05 November 2020

Seyed Hamid Vaziri
Affiliation:
Department of Geology, North Tehran Branch, Islamic Azad University, P.O. Box 19585-851, Tehran, Iran.
Mahmoud Reza Majidifard
Affiliation:
Research Institute for Earth Sciences, Geological Survey of Iran, P.O. Box 13185-1494, Tehran, Iran
Simon A.F. Darroch
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN37235-1805, USA
Marc Laflamme*
Affiliation:
Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3350 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
*
*Corresponding author e-mail: marc.laflamme@utoronto.ca

Abstract

The late Ediacaran (Nama) Fossil Assemblage from the Kushk Series in the Kushk and Chahmir areas of Central Iran highlights a diverse community of globally distributed, soft-bodied (non-skeletonized) Ediacara biota coexisting with skeletonized tubular forms of likely metazoan affinities. Several biostratigraphically and biogeographically important taxa are reported (i.e., erniettomorphs, rangeomorphs, cloudinomorphs, kimberellomorphs, Chuaria, Corumbella), including Convolutubus dargazinensis new genus new species, a new organic-walled tubular organism, allowing for paleoecological studies to be performed. This study highlights the need for continued investigations into the late Ediacaran of Iran, and suggests a biosphere in transition, with a shift in diversity and abundance from large Ediacara biota to organic-walled and skeletonized tubular organisms at the dawn of the Cambrian Explosion.

UUID: http://zoobank.org/350bb98c-5322-488d-a9a5-22c911ab7e53

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, J.E., Grotzinger, J.P., Schroeder, S., Bowing, S.A., Ramezani, J., Martin, M.W. and Matter, A., 2003, Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman: Geology, v. 31, p. 431434.2.0.CO;2>CrossRefGoogle Scholar
Arrouy, M.J., Warren, L.V., Quaglio, D.G.P., Guimaraes Simoes, M., Boselli-Rosa, M., and Gomes Peral, L.E., 2016, Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean: Scientific Reports 6, 30590, https://doi.org/10.1038/srep30590.CrossRefGoogle ScholarPubMed
Babcock, L.E., Grunow, A.W., Sadowski, G.R., and Leslie, S.A., 2005, Corumbella, an Ediacaran-grade organism from the late Neoproterozoic of Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 220, p. 718.CrossRefGoogle Scholar
Boag, T.H., Darroch, S.A.F., and Laflamme, M., 2016, Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils: Paleobiology, v. 42, p. 574594.CrossRefGoogle Scholar
Bobrovskiy, I., Hope, J.M., Ivantsov, A., Nettersheim, B.J., Hallmann, C., and Brocks, J.J., 2018, Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals: Science, v. 361, p. 12461249.CrossRefGoogle ScholarPubMed
Brasier, M.D., Magaritz, M., Cortield, R., Luo, H., Wu, X., Lin, O., Jiang, Z., Hamdi, H., He, T., and Fraser, A.G., 1990, The carbon and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation: Geological Magazine, v. 127, p. 319332.CrossRefGoogle Scholar
Brasier, M.D., Antcliffe, J.B., and Liu, A.G., 2012, The architecture of Ediacaran fronds: Palaeontology, v. 55, p. 11051124.CrossRefGoogle Scholar
Buatois, L.A., and Mángano, M.G., 2016, Ediacaran ecosystems and the dawn of animals, in Mángano, M.G., and Buatois, L.A., eds., The Trace-Fossil Record of Major Evolutionary Events: Volume 1: Precambrian and Paleozoic: Dordrecht, Springer, p. 2772.CrossRefGoogle Scholar
Buatois, L.A., Narbonne, G.M., Mángano, M.G., Carmona, N.B., and Myrow, P., 2014, Ediacaran matground ecology persisted into the earliest Cambrian: Nature Communications, v. 5, art. no. 3544. https://doi.org/10.1038/ncomms4544.CrossRefGoogle ScholarPubMed
Burzynski, G., Narbonne, G.M., Dececchi, T.A., and Dalrymple, R.W., 2017, The ins and outs of Ediacaran discs: Precambrian Research, v. 300, p. 246260.CrossRefGoogle Scholar
Cai, Y., Hua, H., and Zhang, X., 2013, Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte: Precambrian Research, v. 224, p. 255267. https://doi.org/10.1016/j.precamres.2012.09.022.CrossRefGoogle Scholar
Cai, Y., Cortijo, I, Schiffbauer, J.D., and Hua, H. 2017, Taxonomy of the late Ediacaran index fossil Cloudina and new similar taxon from South China: Precambrian Research, v. 298, p. 146156.CrossRefGoogle Scholar
Cai, Y., Xiao, S., Li, G., and Hua, H., 2019, Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion: Geology, v. 47, p. 380384.CrossRefGoogle Scholar
Carbone, C.A., Narbonne, G.M., Macdonald, F.A., and Boag, T.H., 2015, New Ediacaran fossils from the uppermost Blueflower Formation, Northwest Canada: disentangling biostratigraphy and paleoecology: Journal of Paleontology, v. 89, p. 281291.CrossRefGoogle Scholar
Chen, Z., Zhou, C., Xiao, S., Wang, W., Guan, C., Hua, H., and Yuan, X., 2014, New Ediacara fossils preserved in marine limestone and their ecological implications: Scientific Report, v. 4: 4180. https://doi.org/10.1038/srep04180.CrossRefGoogle ScholarPubMed
Clapham, M.E., Narbonne, G.M., and Gehling, J.G., 2003, Palaeoecology of the oldest-known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland: Paleobiology, v. 29, p. 527544. http://dx.doi.org/10.1666/0094-8373(2003)029<0527:POTOKA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M.C., Narbonne, G.M., Gehling, J.G., Greentree, C., and Anderson, M.M., 2004, Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland: Journal of Paleontology, v. 76, p. 10311036.CrossRefGoogle Scholar
Conway Morris, S., Mattes, B.W., and Menge, C., 1990, The early skeletal organism Cloudina: new occurrences from Oman and possibly China: American Journal of Science, 290A, p. 245260.Google Scholar
Coutts, F.J., Gehling, J.G., and García-Bellido, D.C., 2016, How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia: Alcheringa, v. 40, p. 407421.CrossRefGoogle Scholar
Cribb, A.T., Kenchington, C.G., Koester, B., Gibson, B.M., Boag, T.H., Racicot, R.A., Mocke, H., Laflamme, M., and Darroch, S.A., 2019, Increase in metazoan ecosystem engineering prior to the Ediacaran-Cambrian boundary in the Nama Group, Namibia: Royal Society open science, v.6(9), p.190548. https://doi.org/10.1098/rsos.190548.CrossRefGoogle ScholarPubMed
Darroch, S.A.F., Laflamme, M., and Clapham, M.E., 2013, Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland: Paleobiology, v. 39, p. 591608. https://doi.org/10.1666/12051.CrossRefGoogle Scholar
Darroch, S.A.F., Sperling, E.A., Boag, T.H., Racicot, R.A., Mason, S.J., Morgan, A.S., Tweedt, S., Myrow, P., Johnston, D.T., Erwin, D.H., and Laflamme, M., 2015, Biotic replacement and mass extinction of the Ediacara Biota: The Royal Society Publication, Proceeding B, p. 110.Google ScholarPubMed
Darroch, S.A.F., Boag, T.H., Racicot, R.A., Tweedt, S., Mason, S.J., Erwin, D.H., and Laflamme, M., 2016, A mixed Ediacaran-metazoan assemblage from the Zaris sub-basin, Namibia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 459, p. 198208.CrossRefGoogle Scholar
Darroch, S.A., Smith, E.F., Laflamme, M., and Erwin, D.H., 2018a, Ediacaran extinction and Cambrian Explosion: Trends in Ecology & Evolution, v. 33, p. 653663.CrossRefGoogle Scholar
Darroch, S.A., Laflamme, M., and Wagner, P.J., 2018b, High ecological complexity in benthic Ediacaran communities: Nature Ecology & Evolution, v. 2, p. 15411547.CrossRefGoogle Scholar
Dececchi, T.A., Narbonne, G.M., Greentree, C., and Laflamme, M., 2017, Relating Ediacaran Fronds: Paleobiology, v. 43, p. 171180.CrossRefGoogle Scholar
Dececchi, T.A., Narbonne, G.M., Greentree, C., and Laflamme, M., 2018, Phylogenetic relationships among the Rangeomorpha: the importance of outgroup selection and implications for their diversification: Canadian Journal of Earth Sciences, v. 55, p. 12231239.CrossRefGoogle Scholar
Droser, M.L., and Gehling, J.G., 2015, The advent of animals: the view from the Ediacaran: Proceedings of the National Academy of Sciences USA, v. 112, p. 48654870.CrossRefGoogle ScholarPubMed
Droser, M.L., Gehling, J.G., and Jensen, S.R., 2006, Assemblage palaeoecology of the Ediacaran biota: the unabridged edition?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 232, p. 131147.CrossRefGoogle Scholar
Droser, M.L., Tarhan, L.G., and Gehling, J.G., 2017, The rise of animals in a changing environment: global ecological innovation in the late Ediacaran: Annual Review of Earth and Planetary Sciences, v. 45, p. 593617.CrossRefGoogle Scholar
Dunn, F.S., Liu, A.G., and Donoghue, P.C., 2018, Ediacaran developmental biology: Biological Reviews, v. 93, p. 914932.CrossRefGoogle ScholarPubMed
Dunn, F.S., Liu, A.G., and Gehling, J.G., 2019, Anatomical and ontogenetic reassessment of the Ediacaran frond Arborea arborea and its placement within total group Eumetazoa: Palaeontology, v. 62, p.851865.CrossRefGoogle Scholar
Erwin, D.H., Laflamme, M., Tweedt, S.M., and Sperling, E.A., 2011, The Cambrian conundrum: early divergence and later ecological success in the early history of animals: Science, v. 334, p. 10911097.CrossRefGoogle ScholarPubMed
Evans, S.D., Droser, M.L., and Gehling, J.G., 2017, Highly regulated growth and development of the Ediacara macrofossil Dickinsonia costata: PLoS ONE, v. 12 (5), e0176874. https://doi.org/10.1371/journal.pone.0176874.CrossRefGoogle ScholarPubMed
Fedonkin, M.A., 1984, Promorphology of the Vendian Radialia, in Sokolov, B.S., and Iwanowski, A.B., eds., Stratigraphy and Paleontology of the Earliest Phanerozoic: Moscow, Nauka, p. 3058. [in Russian]Google Scholar
Fedonkin, M.A., 1985, Precambrian metazoans: the problems of preservation, systematics and evolution: Philosophical Transactions of the Royal Society of London, B311, p. 2745.Google Scholar
Fedonkin, M.A., and Waggoner, B.M., 1997, The late Precambrian fossil Kimberlla is a mollusc-like bilaterian organism: Nature, v. 388, p. 868871.CrossRefGoogle Scholar
Fedonkin, M.A., Simonetta, A., and Ivantsov, A.Yu., 2007, New data on Kimberella, the Vendian mollusc-like organism (White Sea Region, Russia): palaeoecological and evolutionary implications, in Vickers-Rich, P., and Komarower, P., eds., The Rise and Fall of the Ediacaran Biota: Geological Society, London, Special Publication, v. 286 p. 157179. https://doi.org/10.1144/SP286.12.Google Scholar
Gehling, J.G., and Droser, M.L., 2013, How well do fossil assemblages of the Ediacaran Biota tell time?: Geology, v. 41, p. 447450.CrossRefGoogle Scholar
Glaessner, M.F., 1984, The Dawn of Animal Life: Cambridge, Cambridge University Press, 296 p.Google Scholar
Glaessner, M.F., and Wade, M., 1966, The late Precambrian fossils from Ediacara, South Australia: Palaeontology, v. 9, p. 599628.Google Scholar
Gnilovskaya, M.B., Ishchenko, A.A., Kolesnikov, C.M., Korenchuk, L.B., and Udal, N.A.P., 1988, Vendotenidy vostochno-Evsopeiskoi platformy [Vendotaenids of the East European Platform]: Leningrad, Nauk, p. 143. [in Russian]Google Scholar
Gold, D.A., Runnergar, B., Gehling, J.G., and Jacobs, D.K., 2015, Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia: Evolution & Development, v. 17, p. 315397.CrossRefGoogle ScholarPubMed
Grazhdankin, D., 2004, Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution: Paleobiology, v. 30, p. 203221.2.0.CO;2>CrossRefGoogle Scholar
Hahn, G., and Pflug, H.D. 1980, Ein neuer Medusen-Fund aus dem Jung-Präkambrium von Zentral-Iran: Senckenbergiana lethaea, v. 60, p. 449461.Google Scholar
Hahn, G., and Pflug, H.D., 1985, Die Cloudinidae n. fam., Kalk-Röhren aus dem Vendian und Unter Kambrium: Senckenbergiana lethaea, v. 65, p. 413431.Google Scholar
Hahn, G., Hahn, R., Leonardos, O.H., Pflug, H.D., and Walde, D.H.G., 1982, Koperlich erhaltene Scyphozoen-Reste aus dem Jungprakambrium Brasiliens: Geologie und Palaeontologie, v. 16, p. 118.Google Scholar
Hamdi, B., 1995, Sedimentary rocks of Precambrian–Cambrian in Iran: Geological Survey of Iran Press, no. 20, 353 p. [in Persian].Google Scholar
Hamdi, B., Brasier, M.D., and Zhiwen, J., 1989, Earliest skeletal fossils from Precambrian–Cambrian boundary strata, Elburz Mountains, Iran: Geology Magazine, v. 126, p. 283289.CrossRefGoogle Scholar
Hoekzema, R.S., Brasier, M.D., Dunn, F.S., and Liu, A.G., 2017, Quantitative study of developmental biology confirms Dickinsonia as a metazoan: Proceedings of the Royal Society B: Biological Sciences, v. 284(1862), p. 20171348. https://doi.org/10.1098/rspb.2017.1348.Google Scholar
Ivantsov, A.Yu., 2004, New Proarticulata from the Vendian of the Arkhangel'sk Region: Paleontological Journal, v. 38, p. 247253.Google Scholar
Ivantsov, A.Yu., Narbonne, G.M., Trusler, P.W., Greentree, C., and Vickers-Rich, P., 2016, Elucidating Ernietta: new insights from exceptional specimens in the Ediacaran of Namibia: Lethaia, v. 49, p. 540554.CrossRefGoogle Scholar
Ivantsov, A.Yu., 2007, Small Vendian Transversely Articulated Fossils: Paleontological Journal, v. 41, p. 113122.CrossRefGoogle Scholar
Ivantsov, A.Yu., 2009, New Reconstruction of Kimberella, Problematic Vendian Metazoan: Paleontological Journal, v. 43, p. 601611.CrossRefGoogle Scholar
Ivantsov, A.Yu., and Fedonkin, M.A., 2002, Conulariid-like fossil from the Vendian of Russia: a metazoan clade across the Proterozoic/Paleozoic boundary: Palaeontology, v. 45, p. 12191229.CrossRefGoogle Scholar
Jafari, S.M., Shemirani, A., and Hamdi, B., 2007, Microbiostratigraphy of the Late Ediacaran to Ordovician in NW Iran (Takab area): Geological Society, London, Special Publications, v. 286, p. 433437.Google Scholar
Keller, B.M., and Fedonkin, M.A., 1977, New organic fossil finds in the Precambrian Valday Series along the Syuz'ma River: International Geology Review, v. 19, p. 924930.CrossRefGoogle Scholar
Kimura, H., and Watanabe, Y., 2001, Oceanic anoxia at the Precambrian-Cambrian boundary: Geology, v. 29, p. 995998.2.0.CO;2>CrossRefGoogle Scholar
Kimura, H., Matsumoto, R., Kakuwa, Y., Hamdi, B. and Zibaseresht, H., 1997, The Vendian–Cambrian δ13C record, North Iran: evidence for overturning of the ocean before the Cambrian Explosion: Earth and Planetary Science Letters, v. 147, p. E1E7.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G.M., and Anderson, M.M., 2004, Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland: Journal of Paleontology, v. 78, p. 827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G.M., Greentree, C., and Anderson, M.M., 2007, Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland: Geological Society, London, Special Publication, v. 286, p. 237257.Google Scholar
Laflamme, M., Schiffbauer, J.D., and Narbonne, G.M., 2011, Deepwater microbially induced sedimentary structures (miss) in deep time: the Ediacaran fossil Ivesheadia, in Noffke, N., and Chafetz, H., eds., Microbial Mats in Siliciclastic Depositional Systems Through Time: SEPM Special Publication, v. 101, p. 111123.Google Scholar
Laflamme, M., Darroch, S.A.F, Tweedt, S.M., Peterson, K.J., and Erwin, D.H., 2013, The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat?: Gondwana Research, v. 23, p. 558573.CrossRefGoogle Scholar
Linnemann, U., Ovtcharova, M., Schaltegger, U., Gärtner, A., Hautmann, M., Geyer, G., Vickers-Rich, P., Rich, T., Plessen, B., Hofmann, M., and Zieger, J., 2019, New high-resolution age data from the Ediacaran-Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion: Terra Nova, v. 31, p. 4958.CrossRefGoogle Scholar
Liu, A.G., McIlroy, D., Antcliffe, J.B., and Brasier, M.D., 2011, Effaced preservation in the Ediacara biota of Avalonia and its implications for the early macrofossil record: Palaeontology, v. 54, p. 607630.CrossRefGoogle Scholar
Liu, A.G., McIlroy, D., Matthews, J.J., and Brasier, M.D., 2012, A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland: Journal of the Geological Society, London, v. 169, p. 395403.CrossRefGoogle Scholar
Liu, A.G., Kenchington, C.G., and Mitchell, E.G., 2015, Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota: Gondwana Research, v. 27, 13551380.CrossRefGoogle Scholar
Meyer, M., Schiffbauer, J.D., Xiao, S., Cai, Y., and Hua, H., 2012, Taphonomy of the Upper Ediacaran enigmatic ribbon-like fossil Shaanxilithes: Palaios, v. 27, p. 354372.CrossRefGoogle Scholar
Missarzhevsky, V.V., 1973, Conodont-shaped organisms from Precambrian-Cambrian boundary strata of the Siberian Platform and Kazakhstan: Trudy Instituta Geologii i Geofiziki SO AN SSSR, v. 49, p. 5357.Google Scholar
Muscente, A.D., Boag, T.H., Bykova, N., and Schiffbauer, J.D., 2018, Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life: Earth-Science Reviews, v. 177, p. 248264.CrossRefGoogle Scholar
Muscente, A.D., Bykova, N., Boag, T.H., Buatois, L., Mángano, G., Eleish, A., Prabhu, A., Pan, F., Meyer, M.B., Schiffbauer, J. D., Fox, P., Hazen, R.M., and Knoll, A.H., 2019, Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life: Nature Communications, v. 10 (911), p. 115.CrossRefGoogle ScholarPubMed
Narbonne, G.M., Saylor, B.Z., and Grotzinger, J.P., 1997, The Youngest Ediacaran Fossils from Southern Africa: Journal of Paleontology, v. 71, p. 953967.CrossRefGoogle ScholarPubMed
Narbonne, G.M., Laflamme, M., Greentree, C., and Trusler, P., 2009, Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard`s Bay, Newfoundland: Journal of Paleontology, v. 83, p. 503523.CrossRefGoogle Scholar
Pacheco, M.L.A.F., Galante, D., Rodrigues, F., Leme, J.D.M., Bidola, P., Hagadorn, W., Stockmar, M., Herzen, J., Rudnitzki, I.D., Pfeiffer, F. and Marques, A.C., 2015, Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella: PLOS ONE, v. 10(3): e0114219. https://doi.org/10.1371/journal.pone.0114219.CrossRefGoogle ScholarPubMed
R Core Team, 2019, R: A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Razumovskiy, A.A., Ivantsov, A.Y., Novikov, I.A., and Korochantsev, A.V., 2015, Kuckaraukia multituberculata: a new Vendian fossil from the Basa Formation of the Asha Group in the South Urals: Paleontological Journal, v. 49, p. 449456.CrossRefGoogle Scholar
Rooney, A.D., Cantine, M.D., Bergmann, K.D., Gómez-Pérez, I., Al Baloushi, B., Boag, T.H., Busch, J.F., Sperling, E.A., and Strauss, J.V., 2020, Calibrating the coevolution of Ediacaran life and environment: Proceedings of the National Academy of Sciences, v. 117, p. 1682416830.CrossRefGoogle ScholarPubMed
Schiffbauer, J.D., Huntley, J.W., Oneil, G.R., Darroch, S.A.F., Laflamme, M., and Cai, Y., 2016, The latest Ediacaran Wormworld Fauna: setting the ecological stage for the Cambrian explosion: GSA Today, v. 26, p. 411.Google Scholar
Seilacher, A., 2007, Trace Fossil Analysis: Heidelberg, Germany, Springer, 226 p.Google Scholar
Seilacher, A., and Gishlick, A.D., 2014, Morphodynamics: Boca Raton, Florida, CRC Press, 551 p.CrossRefGoogle Scholar
Selly, T., Schiffbauer, J.D., Jacquet, S.M., Smith, E.F., Nelson, L.L., Andreasen, B.D., Huntley, J.W., Strange, M.A., O'Neil, G.R., Thater, C.A., and Bykova, N., 2019, A new cloudinid fossil assemblage from the terminal Ediacaran of Nevada, USA: Journal of Systematic Palaeontology, v.18, p. 357379. https://doi.org/10.1080/14772019.2019.1623333.CrossRefGoogle Scholar
Shahkarami, S., Mángano, M.G., and Buatois, L.A., 2017a, Discriminating ecological and evolutionary controls during the Ediacaran–Cambrian transition: trace fossils from the Soltanieh Formation of northern Iran: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 476, p. 1527.CrossRefGoogle Scholar
Shahkarami, S., Mángano, M.G., and Buatois, L.A., 2017b, Ichnostratigraphy of the Ediacaran-Cambrian boundary: new insights on lower Cambrian biozonations from the Soltanieh Formation of northern Iran: Journal of Paleontology, v. 91, p. 11781198.CrossRefGoogle Scholar
Shen, Y., Zhang, T., and Hoffman, P.F., 2008, On the coevolution of Ediacaran oceans and animals: Proceedings of the National Academy of Sciences, v. 105, p. 73767381.CrossRefGoogle ScholarPubMed
Smith, E.F., Nelson, L.L., Strange, M.A., Eyster, A.E., Rowland, S.M., Schrag, D.P., and Macdonald, F.A., 2016, The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA: Geology, v. 44, p. 911914.CrossRefGoogle Scholar
Sperling, E.A., Peterson, K.J., and Laflamme, M., 2011, Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans: Geobiology, v. 9, p. 2433.CrossRefGoogle ScholarPubMed
Stöcklin, J., Ruttner, A., and Navavi, M., 1964, New data on the lower Paleozoic and Precambrian of North Iran: Geological Survey of Iran, Report no. 1, 13 p.Google Scholar
Tang, Q., Pang, K., Yuan, X., and Xiao, S., 2017, Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Chuaria: Geology, v. 45, p. 7578CrossRefGoogle Scholar
Tarhan, L.G., Droser, M.L., Cole, D.B., and Gehling, J.G., 2018, Ecological expansion and extinction in the late Ediacaran: weighing the evidence for environmental and biotic drivers: Integrative and Comparative Biology, v. 58, p. 688702.CrossRefGoogle ScholarPubMed
Van Iten, H., 1992a, Morphology and phylogenetic significance of the corners and midlines of the conulariid test: Paleontology, v. 35, p. 335358.Google Scholar
Van Iten, H., 1992b, Microstructure and growth of the conulariid test: implications for conulariid affinities: Paleontology, v. 35, p. 359372.Google Scholar
Van Iten, H., Leme, J.M., Pacheco, M.L.A.F., Simoes, M.G., Fairchild, T.R., Rodrigues, F., Galante, D., Boggiani, P.C., and Marques, A.C., 1996, Origin and early diversification of Phylum Cnidarain: key macrofossils from the Ediacaran System of North and South America, in Goffredo, S., and Dubinsky, Z., eds., The Cinidaria, Past, Present and Future: The World of Medusa and Her Sisters: Switzerland, Springer, p. 3139.Google Scholar
Vaziri, S.H., and Laflamme, M., 2018, Lithostratigraphy and sedimentary environment of the Precambrian Kushk Series of Central Iran: Canadian Journal of Earth Sciences, v. 55, p. 12841296.CrossRefGoogle Scholar
Vaziri, S.H., Majidifard, M.R., and Laflamme, M., 2018, Diverse Assemblage of Ediacaran fossils from Central Iran: Scientific Reports, 8: 5060, https://doi:10.1038/s41598-018-23442-y.CrossRefGoogle ScholarPubMed
Vaziri, S.H., Majidifard, M.R., and Laflamme, M., 2019, New discovery on Ediacaran fossils from the Kushk Series in Bafq and Behabad regions, Central Iran: Scientific Quarterly Journal of Geosciences, Geological Survey of Iran, v. 28, p. 261268. https://doi.org/10.22071/gsj.2018.136508.1495. [in Persian with English abstract]Google Scholar
Vickers-Rich, P., Ivantsov, A.Y., Trusler, P.W., Narbonne, G.M., Hall, M., Wilson, S.A., Greentree, C., Fedonkin, M.A., Elliott, D.A., Hoffmann, K.H., and Schneider, G.I., 2013, Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia: Journal of Paleontology, v. 87, p. 115.CrossRefGoogle Scholar
Vickers-Rich, P., Solemani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S.A., Cas, R., and Rich, T.H., 2017, A preliminary report on new Ediacaran fossils from Iran: Alcheringa, v. 42, p. 231244.Google Scholar
Wade, M., 1969, Medusae from uppermost Precambrian or Cambrian sandstones, central Australia: Palaeontology, v. 12, p. 351365.Google Scholar
Wade, M., 1972, Hydrozoa and Scyphozoa and other Medusoids from the Precambrian Ediacara fauna, South Australia: Palaeontology, v. 15, p. 197225.Google Scholar
Waggoner, B., 1999, Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions: Paleobiology, v. 25, p. 440458.CrossRefGoogle Scholar
Walcott, C.D., 1899, Precambrian fossiliferous formations: Geological Society of America Bulletin, v. 19, p. 199244.CrossRefGoogle Scholar
Walde, D.H.G., Weber, B., Erdtmann, B.D., and Steiner, M., 2019, Taphonomy of Corumbella werneri from the Ediacaran of Brazil: sinotubulitid tube or conulariid test?: Alcheringa, v. 43, p. 335350.CrossRefGoogle Scholar
Wang, X., Yuan, X., Chuanming, Z., Du, K., and Gong, M., 2011, Anatomy and plant affinity of Chuaria: Chinese Science Bulletin, v. 56, p. 12561261.CrossRefGoogle Scholar
Wenz, W., 1938. Gastropoda. In Handbuch der Paliozoologie 6(1), Schindewolf, D.H., ed., Borntraeger, Berlin, 240p.Google Scholar
Wood, R., Liu, A.G., Bowyer, F., Wilby, P.R., Dunn, F.S., Kenchington, C.G., Hoyal Cuthill, J.F., Mitchell, E.G., and Penny, A., 2019, Integrated records of environmental change and evolution challenge the Cambrian Explosion: Nature ecology & evolution, v. 3, p. 528538.CrossRefGoogle ScholarPubMed
Wood, R.A., 2011, Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization: Earth-Science Reviews, v. 106, p. 184190.CrossRefGoogle Scholar
Xiao, S., and Laflamme, M., 2009, On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara Biota: Trends in Ecology and Evolution, v. 24, p. 3140.CrossRefGoogle ScholarPubMed
Xiao, S., Narbonne, G.M., Zhou, C., Laflamme, M., Grazhdankin, D.V., Moczydłowska-Vidal, M., and Cui, H., 2016, Towards an Ediacaran time scale: problems, protocols, and prospects: Episodes, v. 39, p. 540555.CrossRefGoogle Scholar
Yang, B., Steiner, M., Zhu, M., Li, G., Liu, G., and Liu, P., 2016, Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution: Precambrian Research, v. 285, p. 202215.CrossRefGoogle Scholar
Yang, B., Steiner, M., Schiffbauer, J.D., Selly, T., Wu, X., Zhang, C., and Liu, P., 2020, Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids: Scientific Reports, v. 10, p.112.Google ScholarPubMed
Zakrevskaya, M., 2014, Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 410, p. 2738. https://doi.org/10.1016/j.palaeo.2014.05.021.CrossRefGoogle Scholar
Zhang, F., Xiao, S., Kendall, B., Romaniello, S.J., Cui, H., Meyer, M., Gilleaudeau, G.J., Kaufman, A.J., and Anbar, A.D., 2018, Extensive marine anoxia during the terminal Ediacaran Period: Science Advances, v. 4 no. 6, eaan8983. https://doi.org/10.1126/sciadv.aan8983.CrossRefGoogle ScholarPubMed
Zhang, F., Xiao, S., Romaniello, S.J., Hardisty, D., Li, C., Melezhik, V., Pokrovsky, B., Cheng, M., Shi, W., Lenton, T.M., and Anbar, A.D., 2019, Global marine redox changes drove the rise and fall of the Ediacara biota: Geobiology, v. 17, p. 594610.CrossRefGoogle ScholarPubMed
Zhu, M., Zhuravlev, A.Y., Wood, R.A., Zhao, F., and Sukhov, S.S., 2017, A deep root for the Cambrian explosion: implications of new bio- and chemostratigraphy from the Siberian Platform: Geology, v. 45, p. 459462.CrossRefGoogle Scholar