Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T22:48:07.027Z Has data issue: false hasContentIssue false

A new, complex hyaline larger benthic foraminifer, Bigaella orbitoidiformis n. gen. n. sp., from the upper Bartonian-Priabonian of NW Turkey

Published online by Cambridge University Press:  04 April 2022

Ercan Özcan*
Affiliation:
İstanbul Technical University, Faculty of Mines, Department of Geological Engineering, Maslak 34469, İstanbul, Turkey ,
Simon F. Mitchell
Affiliation:
Department of Geography and Geology, University of the West Indies, Mona, Kingston 7, Jamaica ,
Johannes Pignatti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
Michael D. Simmons
Affiliation:
Halliburton, 97 Milton Park, Abingdon, OX14 4RW, United Kingdom
Ali Osman Yücel
Affiliation:
İstanbul Technical University, Faculty of Mines, Department of Geological Engineering, Maslak 34469, İstanbul, Turkey ,
Natalie Robinson
Affiliation:
Department of Geography and Geology, University of the West Indies, Mona, Kingston 7, Jamaica ,
*
*Corresponding author.

Abstract

The upper Bartonian–Priabonian shallow-marine deposits in the Biga Peninsula (NW Turkey) contain some hyaline larger benthic foraminifers (LBF) with a test architecture similar to ‘orbitoidiform’ foraminifers, but displaying some distinctive and complex morphological features that are recorded here for the first time. These coarsely porous specimens are characterized by a flat, disc-shaped, fragile, and smooth test with a layer of equatorial chambers/chamberlets, surrounded by poorly developed lateral chamberlets, never forming a discrete layer on either side of the equatorial layer. The nepionic stage is very distinctive because the bilocular embryonic apparatus is followed by a semi-rounded, notably large auxiliary chamber with a characteristic wavy outline, and consecutive cyclical chambers. The cyclical chamber arrangement is later transformed into annular cycles with numerous, complex arcuate- to cup-shaped chamberlets, as observed in equatorial sections. Bigaella orbitoidiformis Özcan, Mitchell, Pignatti, Simmons, and Yücel, n. gen. n. sp., is established for these specimens, and placed within the family Eoannulariidae Ferràndez-Cañadell and Serra-Kiel, emended herein. The new genus occurs together with Caudriella Haman and Huddleston and Epiannularia Caudri (both originally established from the American bioprovince) and the genus Linderina Schlumberger (found both in the Tethys and the American bioprovinces), together with other typical Western Tethyan LBFs. A comparison of the new genus with the aforementioned taxa is given.

UUID: http://zoobank.org/ab917e30-86d3-4bc2-8115-d17cf75f5d79.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ. H., Hakyemez, H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M. F., Yurtsever, A., 2011, Geological Map of Turkey: General Directorate of Mineral Research and Exploration, Ankara, 1 sheet.Google Scholar
Altunkaynak, Ş., and Genç, Ş.C., 2008, Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey): Lithos, v. 102, p. 316340.CrossRefGoogle Scholar
Andjić, G., Baumgartner-Mora, C., Baumgartner, P.O., and Petrizzo, M.R., 2018, Tectono-stratigraphic response of the Sandino Forearc Basin (N-Costa Rica and W-Nicaragua) to episodes of rough crust and oblique subduction: The Depositional Record, v. 4, p. 90132.CrossRefGoogle Scholar
Archiac, E.J.A.D., d', 1846, Description des fossiles recueillis par M. Thorent dans les couches à Nummulites des environs de Bayonne: Mémoires de la Société Géologique de France, v. 2, p. 189218.Google Scholar
Barker, R.W., and Grimsdale, T.F., 1936, A contribution to the phylogeny of the orbotoidal foraminifera with descriptions of the new forms from the Eocene of Mexico: Journal of Paleontology, v. 10, p. 231247.Google Scholar
BouDagher-Fadel, M.K., 2018, Evolution and Geological Significance of Larger Benthic Foraminifera, Second Edition: London, UCL Press, 693 p.Google Scholar
Caudri, C.M.B., 1974, The larger foraminifera of Punta Mosquito, Margarita Island, Venezuela: Verhandlungen der Naturforschenden Gesellschaft in Basel, v. 84, p. 293318.Google Scholar
Cole, W.S., and Bermúdez, J.C., 1944, New foraminiferal genera from the Cuban middle Eocene: Bulletins of American Paleontology, v. 28, p. 113121.Google Scholar
Colom, G., and Bauzà, J., 1950, Operculina canalifera gomezi n. subsp. del Banoniense de Cataluña: Boletín de la Sociedad Española de Historia Natural, v. 47, p. 219221.Google Scholar
Cornée, J.-J., BouDagher-Fadel, M., Philippon, M., Léticée, J.L., Legendre, L., Maincent, G., and Lebrun, J.F., 2020, Paleogene carbonate systems of Saint Barthélemy, Lesser Antilles: stratigraphy and general organization: Newsletters on Stratigraphy, v. 53, p. 461478.CrossRefGoogle Scholar
Douvillé, H., 1916, Crétacé et le Tertiaire aux environs de Thônes (Haute-Savoie): Comptes Rendus des Séances de l'Académie des Sciences, v. 163, p. 324331.Google Scholar
Drooger, C.W., 1993, Radial foraminifera, morphometrics and evolution: Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Natuurkunde, Erste Reeks, v. 41, p. 1241.Google Scholar
Duru, M., Dönmez, M., Ilgar, A., Pehlivan, Ş., and Akçay, A.E., 2012, Biga yarımadası’nın jeoloji ve yer altı kaynakları haritası (Geology and subsurface resources map of the Biga Peninsula), in Yüzer, E., and Tunay, G., eds., Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi: Bulletin of the Mineral Research and Exploration, Special Publication No. 28, p. 774.Google Scholar
Ersoy, E.Y., Akal, C., Genç, Ş.C., Candan, O., Palmer, M.R., Prelević, D., Uysal, İ., and Mertz-Kraus, R., 2017, U-Pb zircon geochronology of the Paleogene-Neogene volcanism in the NW Anatolia: its implications for the late Mesozoic–Cenozoic geodynamic evolution of the Aegean: Tectonophysics, v. 717, p. 284301.CrossRefGoogle Scholar
Fabiani, R., 1905, Studio geo-paleontologico dei Colli Berici: Atti del Regio Istituto Veneto di Scienze, v. 64, p. 17971839.Google Scholar
Ferràndez-Cañadell, C., 1998, Morphostructure and paleobiology of Mesogean orthophragminids (Discocyclinidae and Orbitoclypeidae, Foraminifera): Acta Geologica Hispanica, v. 31, p. 183187.Google Scholar
Ferràndez-Cañadell, C., 2002, New Paleocene orbitoidiform foraminifera from the Punjab Salt Range, Pakistan: Journal of Foraminiferal Research, v. 32, p. 121.CrossRefGoogle Scholar
Ferràndez-Cañadell, C., and Serra-Kiel, J., 1999, Morphostructure and systematics of Linderina brugesi Schlumberger, 1893 (Foraminifera, Eocene): Geobios, v. 32, p. 525537.CrossRefGoogle Scholar
Genç, Ş.C., Dönmez, M., Akçay, A.E., Altunkaynak, Ş., Eyüpoğlu, M., and Ilgar, Y., 2012, Biga Yarımadası Tersiyer volkanizmasının stratigrafik, petrografik ve kimyasal özellikleri (Stratigraphic, petrographic and chemical features of Tertiary volcanism in Biga Peninsula), in Yüzer, E., and Tunay, G., eds., Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi: Bulletin of the Mineral Research and Exploration, Special Publication No. 28, p. 122162.Google Scholar
Grigoryan, S.M., 1986, Nummulitidy i Orbitoidy Armanskoj SSR: Erevan, SSR, Akademia Nauk Armanskoj, 216 p.Google Scholar
Gümbel, C.W., 1870, Beiträge zur Foraminiferenfauna der nordalpinen, älteren Eocängebilde oder der Kressenberger Nummulitenschichten: Abhandlungen der Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften, v. 10, p. 581730.Google Scholar
Hadi, M., Less, G., and Vahidinia, M., 2019, Eocene larger benthic foraminifera (alveolinids, nummulitids, and orthophragmines) from the eastern Alborz region (NE Iran): taxonomy and biostratigraphy implications: Revue de Micropaléontologie, v. 63, p. 6584.CrossRefGoogle Scholar
Haman, D., and Huddleston, R.W., 1984, Caudriella, a new name for Margaritella Caudri, 1974 (Foraminiferida), non Meek and Hayden, 1860 (Mollusca): Proceedings of the Biological Society of Washington, v. 97, p. 126.Google Scholar
Hottinger, L., 1966, Foraminifères rotaliformes et Orbitoïdes du Sénonien inférieur Pyrénéen: Eclogae Geologicae Helvetiae, v. 59, p. 277301.Google Scholar
Hottinger, L., 2005, Geometrical constraints in foraminiferal architecture: consequences of change from planispiral to annular growth: Studia Geologica Polonica, v. 124, p. 99115.Google Scholar
Hottinger, L., 2006, Illustrated glossary of terms used in foraminiferal research. Carnets de Géologie/Notebooks on Geology, Brest, Memoir 2006/02 (CG2006_M02). https://doi.org/10.4267/2042/5832.CrossRefGoogle Scholar
Ilgar, A., Demirci-Sezen, E., and Demirci, Ö., 2012, Biga Yarımadası Tersiyer istifinin stratigrafisi ve sedimantolojisi (Stratigraphy and sedimentology of the Tertiary sequence in Biga Peninsula), in Yüzer, E., and Tunay, G., eds., Biga Yarımadası’nın Genel ve Ekonomik Jeolojisi: Bulletin of the Mineral Research and Exploration, Special Publication 28, p. 75120.Google Scholar
Jones, E.J.W., BouDagher-Fadel, M.K., and Thirlwall, M.F., 2002, An investigation of seamount phosphorites in the eastern equatorial Atlantic: Marine Geology, v. 183, p. 143162.CrossRefGoogle Scholar
Kaufmann, F.J., 1867, Geologische Beschreibung des Pilatus: Beitrage zur Geologischen Karte der Schweiz, v. 5, p. 1169.Google Scholar
Less, Gy., 1987, Paleontology and stratigraphy of the European Orthophragminae: Geologica Hungarica, series Palaeontologica, v. 51, p. 1373.Google Scholar
Less, Gy., and Özcan, E., 2012, Bartonian–Priabonian larger benthic foraminiferal events in the Western Tethys: Austrian Journal of Earth Sciences, v. 105, p. 129140.Google Scholar
Less, Gy., Özcan, E., Papazzoni, C.A., and Stockar, R., 2008, The middle to late Eocene evolution of involute Heterostegina, nummulitid Foraminifera, in the Western Tethys: Acta Palaeontologica Polonica, v. 53, p. 317350.CrossRefGoogle Scholar
Less, Gy., Özcan, E., and Okay, A.I., 2011, Stratigraphy and larger foraminifera of the middle Eocene to lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 20, p. 793845.Google Scholar
Loeblich, A.R., and Tappan, H., 1987, Foraminiferal Genera and their Classification: New York, Van Nostrand Reinhold Company, 970 p.Google Scholar
Michelin, H., 1846, Iconographie Zoöphytologique: Paris, P. Bertrand, 348 p.Google Scholar
Neumann, M., 1958, Révision des Orbitoididés du Crétacé et de l'Eocène en Aquitaine occidentale: Mémoires de la Société Géologique de France, v. 37, p. 1174.Google Scholar
Nuttall, W.L.F., 1926, The zonal distribution and description of the larger foraminifera of the Middle and Lower Kirthar series (middle Eocene) of parts of western India: Geological Survey of India, v. 59, p. 115164.Google Scholar
Okay, A.I., and Tüysüz, O., 1999, Tethyan sutures of northern Turkey, in Durand, B., Jolivet, L., Horváth, E., and Séranne, M., eds., The Mediterranean Basins: Tertiary Extension within the Alpine Orogen: Geological Society, London, Special Publication, v. 156, p. 475515.Google Scholar
Okay, A.I., Siyako, M., and Bürkan, K.A., 1991, Geology and tectonic evolution of the Biga Peninsula: Bulletin of the Technical University of Istanbul, v. 44, p. 191255.Google Scholar
Okay, A.I., Özcan, E., Cavazza, W., Okay, N., and Less, Gy., 2010, Upper Eocene olistostromes, two contrasting basement types and the initiation of the southern Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 19, p. 125.Google Scholar
Okay, A.I., Özcan, E., Hakyemez, A., Siyako, M., Sunal, G., and Kylander-Clark, A.R.C., 2019, The Thrace Basin and the Black Sea—the Eocene–Oligocene marine connection: Geological Magazine, v. 156, p. 3961.CrossRefGoogle Scholar
Özcan, E., Less, Gy., Okay, A.I., Báldi-Beke, M., Kollányi, K., and Yılmaz, İ., 2010, Stratigraphy and larger foraminifera of the Eocene shallow-marine and olistostromal units of the southern part of the Thrace Basin, NW Turkey: Turkish Journal of Earth Sciences, v. 19, p. 2777.Google Scholar
Özcan, E., Okay, A.I., Bürkan, K.A., Yücel, A.O., and Özcan, Z., 2018a, Middle–late Eocene marine record of the Biga Peninsula, NW Anatolia, Turkey: Geologica Acta, v. 16, p. 163187.Google Scholar
Özcan, E., Saraswati, P.K., Yücel, A.O., Ali, N., and Hanif, M., 2018b, Bartonian orthophragminids from the Fulra Limestone (Kutch, W India) and coeval units in Sulaiman Range, Pakistan: a synthesis of shallow benthic zone (SBZ) 17 for the Indian Subcontinent: Geodinamica Acta, v. 30, p. 137162.CrossRefGoogle Scholar
Özcan, E., Less, Gy., Jovane, L., Catanzariti, R., Frontalini, F., et al. , 2019, Integrated biostratigraphy of the middle to upper Eocene Kırkgeçit Formation (Baskil section, Elazığ, eastern Turkey): larger benthic foraminiferal perspective: Mediterranean Geoscience Reviews, v. 1, p. 5590.CrossRefGoogle Scholar
Özcan, E., Yücel, A.O., Erkızan, L.S., Gültekin, M.N., Kayğılı, S., and Yurtsever, S., 2022a, Atlas of the Tethyan orthophragmines: Mediterranean Geoscience Reviews, v. 4(1). https://doi.org/10.1007/s42990-022-00072-1.CrossRefGoogle Scholar
Özcan, E., Yücel, A.O., Mitchell, S.F., Pignatti, J., Simmons, M.D., Okay, A.I., Erkızan, L.S., and Gültekin, M.N., 2022b, New records of Caudriella Haman and Huddleston from the middle and late Eocene of Neo-Tethys: taxonomic and palaeobiogeographic implications: Journal of Foraminiferal Research, v. 52, p. 2139.CrossRefGoogle Scholar
Reuss, A.E., 1848, Die fossilen Polyparien des Wiener Tertiärbeckens: Haidingers Naturwissenschaftlichen Abhandlungen, v. 2, p. 1109.Google Scholar
Robinson, E., and Mitchell, S.F., 1999, Upper Cretaceous to Oligocene stratigraphy in Jamaica, in Mitchell, S.F., ed., Middle Eocene to Oligocene Stratigraphy and Palaeogeography in Jamaica: a Window on the Nicaragua Rise: Contributions to Geology, UWI, Mona, v. 4, p. 147.Google Scholar
Rütimeyer, L., 1850, Ueber das schweizerische Nummulitenterrain mit besonderer Berücksichtigung des Gebirges zwischen den Thunersee und der Emme: Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften, v. 11, p. 1120.Google Scholar
Samanta, B. K., and Lahiri, A., 1985, The occurrence of Discocyclina Gümbel in the middle Eocene Fulra Limestone of Cutch, Gujarat, western India, with notes on species reported from the Indian region. Bulletin of the Geological Mining Metallurgical Society of India, v. 52, p. 211295.Google Scholar
Schlumberger, C., 1893, Note sur les genres Trillina et Linderina: Bulletin de la Société Géologique de France, v. 21, p. 118123.Google Scholar
Schlumberger, C., 1903, Troisième note sur les Orbitoides: Bulletin de la Société Géologique de France, v. 4, p. 273289.Google Scholar
Schwager, C., 1876, Saggio di una classificazione dei foraminiferi avuto riguardo alle loro famiglie naturali: Bolletino R. Comitato Geologico d'Italia, v. 7, p. 475485.Google Scholar
Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferràndez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samsó, J.M., Schaub, H.P., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J., Zakrevskaya, E.Y., 1998, Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene: Bulletin de la Société Géologique de France, v. 169, p. 281299.Google Scholar
Sirel, E., 1976, Eoannularia conica n. sp. türünün tanımı ve Darende–Gürün (batı Malatya) yöresindeki Üst Lütesiyen–Alt Priaboniyen kireçtaşlarına ilişkin yeni görüşler. Description of the new species Eoannularia conica n. sp. and new observations on the upper Lutetian–lower Priabonian limestone in the Darende-Gürün (west of Malatya) region: Bulletin of the Geological Society of Turkey, v. 19, p. 7982. [in Turkish with English abstract]Google Scholar
Sirel, E., Ayyıldız, T., and Deveciler, A., 2020, Foraminifera of shallow and very shallow facies from the upper Eocene–lower Oligocene Kazandere Member, Soğucak Formation, Thrace Basin, northwest Turkey: Geologica Acta, v. 18.14, p. 121.CrossRefGoogle Scholar
Siyako, M., and Huvaz, O., 2007, Eocene stratigraphic evolution of the Thrace Basin, Turkey: Sedimentary Geology, v. 198, p. 7591.CrossRefGoogle Scholar
Siyako, M., Bürkan, K.A., and Okay, A.I., 1989, Biga ve Gelibolu yarımadalarının Tersiyer jeolojisi ve hidrokarbon olanakları (Tertiary geology and hydrocarbon potential of the Biga and Gelibolu peninsulas): Türkiye Petrol Jeologlari Derneği Bülteni, v. 1, p. 183199. [in Turkish with English abstract]Google Scholar
Stampfli, G.M., and Borel, G.D., 2004, The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain, in Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., and Ziegler, P.A., eds., The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle: Berlin, Heidelberg, Springer, p. 5380.CrossRefGoogle Scholar
Tan, S.H., 1939, On Polylepidina, Orbitocyclina, and Lepidorbitoides: Ingenieur in Nederlandsch-Indië, Mijnbouw en Geologie, v. 6, p. 5384.Google Scholar
Van Gorsel, J.T., 1978, Late Cretaceous orbitoidal foraminifera, in Hedley, R.G., and Adams, C.G., eds, Foraminifera: London, Academic Press, p. 1120.Google Scholar
Yücel, A.O., Özcan, E., and Erbil, Ü., 2020, Latest Priabonian larger benthic foraminiferal assemblages at the demise of Soğucak Carbonate Platform (Thrace Basin and Black Sea shelf, NW Turkey): implications for the shallow marine biostratigraphy: Turkish Journal of Earth Sciences, v. 29, p. 85114.CrossRefGoogle Scholar