Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T09:18:42.044Z Has data issue: false hasContentIssue false

New middle Eocene radiolarian species (Rhizaria, Polycystinea) from Blake Nose, subtropical western North Atlantic Ocean

Published online by Cambridge University Press:  22 July 2024

Mathias Meunier*
Affiliation:
Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,
Taniel Danelian
Affiliation:
Univ. Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,
*
*Corresponding author.

Abstract

Diverse and well-preserved radiolarian assemblages were recovered from the middle Eocene sedimentary sequences drilled at Ocean Drilling Program Site 1051 (Leg 171B; western subtropical Atlantic). In addition to biostratigraphically important species, several unknown morphotypes were observed in this material, leading to the description of three new spumellarian species and 18 new nassellarian species. Described herein are: Periphaena petrushevskayae n. sp. (Phacodiscidae), Stylodictya oligodonta n. sp. (Trematodiscidae), Excentrosphaerella delicata n. sp. (Heliodiscidae), Eucyrtidium granatum n. sp. (Eucyrtidiidae), Dictyoprora echidna n. sp., Spirocyrtis matsuokai n. sp. (Artostrobiidae), Elaphospyris cordiformis n. sp., Elaphospyris quadricornis n. sp. (Cephalospyrididae), Ceratocyrtis oconnori n. sp. (Lophophaenidae), Botryocella? alectrida n. sp., Pylobotrys? bineti n. sp. (Pylobotrydidae), Lychnocanium cheni n. sp., Lychnocanium cingulatum n. sp., Lychnocanium croizoni n. sp., Lychnocanium forficula n. sp. (Lithochytrididae), Apoplanius hyalinus n. sp., Apoplanius cryptodirus n. sp. (Lophocyrtiidae), Albatrossidium messiaeni n. sp., Phormocyrtis microtesta n. sp., Cryptocarpium? judoka n. sp. (Pterocorythidae), and Thyrsocyrtis kamikuri n. sp. (Theocotylidae). Biostratigraphic information is provided for each new species. In addition, we re-describe and illustrate the morphological variability of a remarkable Pterocyrtidium species formerly published by Bütschli (1882a).

UUID: http://zoobank.org/a01f7f03-73b0-458a-af7b-b85dc4666cc2

Type
Articles
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bjørklund, K.R., 1976, Radiolaria from the Norwegian Sea, Leg 38 of the Deep Sea Drilling Project, in Talwani, M., Udintsev, G., Bjørklund, K., Caston, V.N.D., Faas, R.W., et al., eds., Initial Reports DSDP 38: Washington DC, USA, U.S. Government Printing Office, p. 11011168.Google Scholar
Bütschli, O., 1882a, Beiträge zur Kenntnis der Radiolarienskelette, insbesondere der Cyrtida: Zeitschrift für Wissenschaftliche Zoologie, v. 36, p. 485540.Google Scholar
Bütschli, O., 1882b, Erste Band, Protozoa, in Bronn, H.G., ed., Klassen und Ordnungen des Thier-Reiches, Wissenschaftlich Dargestlet: Leipzig und Heidelberg, C.F. Winter, p. 1482.Google Scholar
Campbell, A.S., 1953, A new radiolarian genus: Journal of Paleontology, v. 27, p. 296.Google Scholar
Campbell, A.S., 1954, Radiolaria, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part. D, Protista 3: Geological Society of America and University of Kansas Press, Lawrence, Kansas, p. 11195.Google Scholar
Cavalier-Smith, T., 1999, Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree: Journal of Eukaryotic Microbiology, v. 46, p. 347366.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T., 2002, The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa: International Journal of Systematic and Evolutionary Microbiology, v. 52, p. 297354.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T., 2003, Protist phylogeny and the high-level classification of Protozoa: European Journal of Protistology, v. 39, p. 338348.CrossRefGoogle Scholar
Chediya, D.M., 1959, [Obzor Sistematiki Radiolyarii]: Stalingrad, Tadzhikskii Gosudarstvennyi Universitet, 330 p. [in Russian]Google Scholar
Chen, P.-H., 1975, Antarctic Radiolaria, in Hayes, D.E., Frakes, L.A., Barrett, P.J., Burns, D.A., Chen, P.-H., et al., eds., Initial Reports DSDP, 28: Washington, DC, USA, U.S. Government Printing Office, p. 437513.Google Scholar
Clark, B.L., and Campbell, A.S., 1942, Eocene radiolarian faunas from the Monte Diablo area, California: Geological Society of America, Special Papers 39, 112 p.Google Scholar
Clark, B.L., and Campbell, A.S., 1945, Radiolaria from the Kreyenhagen Formation near Los Banos, California: Geological Society of America, Memoir 10, 66 p.CrossRefGoogle Scholar
De Wever, P., Dumitrică, P., Caulet, J.-P., Nigrini, C.A., and Caridroit, M., 2001, Radiolarians in the sedimentary record: Amsterdam, Gordon and Breach Science Publishers, 533 p.Google Scholar
Dumitrică, P., 1978, Badenian Radiolaria from central Paratethys, in Brestenska, E., ed., Chronostratigraphie und Neostratotypen, Miozaen der Zentralen Paratethys, vol. 6: VEDA, Verlag der Slowakischen Akademie der Wissenschaften, Bratislava, Czechoslovakia, p. 231261.Google Scholar
Dumitrică, P., 1984, [Systematics of Sphaerellarian radiolarian], in Petrushevskaya, M.G., and Stepanjants, S.D., eds., Morphology, Ecology and Evolution of Radiolarians: Leningrad, USSR, Akademiya Nauk SSSR, Zoological Institute, p. 91102. [in Russian]Google Scholar
Dumitrică, P., 2019, Cenozoic spumellarian Radiolaria with eccentric microsphere: Acta Palaeontologica Romaniae, v. 15, p. 3960.CrossRefGoogle Scholar
Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs, S.J., Roberts, A.P., and Norris, R.D., 2010, New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 297, p. 670682.CrossRefGoogle Scholar
Ehrenberg, C.G., 1839, Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen: Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1838, p. 59147.Google Scholar
Ehrenberg, C.G., 1844, Über 2 neue Lager von Gebirgsmassen aus Infusorien als Meeres-Absatz in Nord-Amerika und eine Vergleichung derselben mit den organischen Kreide-Gebilden in Europa und Afrika: Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1844, p. 5797.Google Scholar
Ehrenberg, C.G., 1846, Über eine halibiolithische, von Herrn R. Schomburgk entdeckte, vorherrschend aus mikroskopischen Polycystinen gebildete, Gebirgsmasse von Barbados: Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1846, p. 382385.Google Scholar
Ehrenberg, C.G., 1847, Über die mikroskopischen kieselschaligen Polycystinen als mächtige Gebirgsmasse von Barbados und über das Verhältniss deraus mehr als 300 neuen Arten bestehenden ganz eigenthumlichen Formengruppe jener Felsmasse zu den jetzt lebenden Thieren und zur Kreidebildung Eine neue Anregung zur Erforschung des Erdlebens: Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1847, p. 4060.Google Scholar
Ehrenberg, C.G., 1854, Mikrogeologie. Das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbststandigen Lebens auf der Erde: Leipzig, Verlag von Leopold Voss, 374 p.Google Scholar
Ehrenberg, C.G., 1874, Grössere Felsproben des Polycystinen-Mergels von Barbados mit weiteren Erläuterungen: Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1873, p. 213263.Google Scholar
Ehrenberg, C.G., 1876, Fortsetzung der mikrogeologischen Studien als Gesammt—Uebersichtder mikroskopischen Paläontologie gleichartig analysirter Gebirgsarten der Erde, mit specieller Rücksicht auf den Polycystinen-Mergel von Barbados: Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Jahre 1875, p. 1225.Google Scholar
Empson-Morin, K.M., 1981, Campanian Radiolaria from DSDP Site 313, Mid-Pacific Mountains: Micropaleontology, v. 27 (3), p. 249292.CrossRefGoogle Scholar
Foreman, H.P., 1973, Radiolaria of Leg 10 with systematics and ranges for the families Amphipyndacidae, Artostrobiidae and Theoperidae, in Worzel, J.L., Bryant, W., Beall, A.O. Jr., Capo, R., Dickinson, K., Foreman, H.P., Laury, R., McNeely, B.W., and Smith, L.A., eds., Initial Reports DSDP, 10: Washington, DC, USA, U.S. Government Printing Office, p. 407474.Google Scholar
Frizzell, D.L., and Middour, E.S., 1951, Paleocene Radiolaria from southeastern Missouri: Bulletin of Missouri School of Mines and Metallurgy, v. 77, p. 141.Google Scholar
Goll, R.M., 1968, Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean basins, Part I: Journal of Paleontology, v. 42, p. 14091432.Google Scholar
Goll, R.M., 1969, Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in the Pacific and Caribbean basins, Part II: Journal of Paleontology, v. 43, p. 322339.Google Scholar
Haeckel, E., 1862, Die Radiolarien (Rhizopoda Radiaria). Eine Monographie: Berlin, Germany, Reimer, 572 p.CrossRefGoogle Scholar
Haeckel, E., 1882, Entwurf eines Radiolarien—Systems auf Grund von Studien der Challenger—Radiolarien: Jenaische Zeitschrift für Naturwissenschaft, v. 15, p. 418472.Google Scholar
Haeckel, E., 1887, Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876: Report on the Scientific Results of the Voyage of the H.M.S. Challenger, Zoology, v. 18, 1803 p.Google Scholar
Hertwig, R., 1879, Der Organismus der Radiolarien: G. Fischer, Jena, Germany, 149 p.Google Scholar
Hollis, C.J., Waghorn, D.B., Strong, C.P., and Crouch, E.M., 1997, Integrated Paleogene biostratigraphy of DSDP site 277 (Leg 29): foraminifera, calcareous nannofossils, Radiolaria, and palynomorphs: Institute of Geological and Nuclear Sciences, Science report 97/07, p. 173.Google Scholar
Hollis, C.J., Pascher, K.M., Sanfilippo, A., Nishimura, A., Kamikuri, S.-I., and Shepherd, C.L., 2020, An Austral radiolarian biozonation for the Paleogene: Stratigraphy, v. 17, p. 213278.CrossRefGoogle Scholar
Kamikuri, S.-I., 2015, Radiolarian assemblages during the middle-late Eocene transition at Site 1052, ODP Leg 171B, Blake Nose, western North Atlantic Ocean: News of Osaka Micropaleontologists, v. 15, p. 139167.Google Scholar
Krasheninnikov, V.A., 1960, [Some radiolarians of the lower and middle Eocene of the Western Pre-Caucasus], in Sazonov, N.T., and Shchutskaya, E.K., eds., Paleontological Collection 3: Transactions of the All Union Petroleum Scientific Research Institute for Geological Survey (VNIGRI), Leningrad, USSR, v. 16, p. 271308. [in Russian].Google Scholar
Land, L.A., Paull, C.K., Spiess, F.N., 1999, Abyssal erosion and scarp retreat: deep tow observations of the Blake Escarpment and Blake Spur: Marine Geology, v. 160, p. 6383.CrossRefGoogle Scholar
Lazarus, D.B., Suzuki, N., Ishitani, Y., Takahashi, K., 2021. Paleobiology of the Polycystines Radiolaria: Hoboken, NJ, Wiley-Blackwell, 481 p.CrossRefGoogle Scholar
Matsuzaki, K.M., Suzuki, N., and Nishi, H., 2015, Middle to upper Pleistocene Polycystine radiolarians from Hole 902–C9001C, Northwestern Pacific: Paleontological Research, v. 19, p. 177.CrossRefGoogle Scholar
Meunier, M., and Danelian, T., 2022, Astronomical calibration of late middle Eocene radiolarian bioevents from ODP Site 1260 (equatorial Atlantic, Leg 207) and refinement of the global tropical radiolarian biozonation: Journal of Micropalaeontology, v. 41, p. 127.CrossRefGoogle Scholar
Meunier, M., and Danelian, T., 2023, Progress in understanding middle Eocene nassellarian (Radiolaria, Polycystinea) diversity; new insights from the western equatorial Atlantic Ocean: Journal of Paleontology, v. 97, p. 125.CrossRefGoogle Scholar
Mita, I., 2001, 7. Data report: early to late Eocene calcareous nannofossil assemblages of Sites 1051 and 1052, Blake Nose, northwestern Atlantic Ocean, in Kroon, D., Norris, R.D., and Klaus, A., eds., Proceedings of the Ocean Drilling Program, Scientific Results, v. 171B, p. 128.Google Scholar
Moore, T.C. Jr., and Kamikuri, S.-I., 2012, Data report: radiolarian stratigraphy across the Eocene/Oligocene boundary in the equatorial Pacific, Sites 1218, U1333, and U1334, in Pälike, H., Lyle, M., Nishi, H., Raffi, I., Gamage, K., Klaus, A., and the Expedition 320/321 Scientists, eds., Proceedings of the Integrated Ocean Drilling Program 320/321: Pacific Equatorial Age Transect: Integrated Ocean Drilling Program Management International, College Station, Texas, p. 137.Google Scholar
Nigrini, C., 1977, Equatorial Cenozoic Artostrobiidae (Radiolaria): Micropaleontology, v. 23, p. 241269.CrossRefGoogle Scholar
Nigrini, C., Sanfilippo, A., and Moore, T.J. Jr., 2005, Cenozoic radiolarian biostratigraphy: a magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific, in Wilson, P.A., Lyle, M., and Firth, J.V., eds., Proceedings of the Ocean Drilling Program, Scientific Results, v. 199, p. 176.Google Scholar
Norris, R.D., Kroon, D., and Klaus, A., 1998, Shipboard scientific party, in Kroon, D., Norris, R.D., and Klaus, A., eds., Proceedings of the Ocean Drilling Program, Initial Reports, v. 171B, p. 351360.Google Scholar
Obut, O.T., Iwata, K., 2000, Lower Cambrian Radiolaria from the Gorny Altai (southern West Siberia): News of Paleontology and Stratigraphy, v. 2, p. 3338.Google Scholar
O'Connor, B., 1994, Seven new radiolarian species from the Oligocene of New Zealand: Micropaleontology, v. 40, p. 337350.CrossRefGoogle Scholar
O'Connor, B., 1997, New Radiolaria from the Oligocene and early Miocene of Northland, New Zealand: Micropaleontology, v. 43, p. 63100.CrossRefGoogle Scholar
O'Connor, B., 1999, Radiolaria from the late Eocene Oamaru Diatomite, South Island, New Zealand: Micropaleontology, v. 45, p. 155.CrossRefGoogle Scholar
O'Dogherty, L., Caulet, J.-P., Dumitrică, P., and Suzuki, N., 2021, Catalogue of Cenozoic radiolarian genera (Class Polycystinea): Geodiversitas, v. 43, p. 7091185.CrossRefGoogle Scholar
Ogg, J.G., and Bardot, L., 2001, Aptian through Eocene magnetostratigraphic correlation of the Blake Nose transect (Leg 171B), Florida continental margin, in Kroon, D., Norris, R.D., and Klaus, A., eds., Proceedings of the Ocean Drilling Program, Scientific Results, v. 171B, p. 158.Google Scholar
Petrushevskaya, M.G., 1971, [Nassellarian radiolarians in the plankton of the world ocean]: Akademiya Nauk SSSR, Zoologicheskii Institut, Issledovaniya Fauny Morei, v. 9, p. 1294. [in Russian]Google Scholar
Petrushevskaya, M.G., 1981, [Nassellarian radiolarians from the world oceans]: Leningrad, USSR, Nauka, Leningradskoe Otdelenie, Publications of the Zoological Institute, Academy of Sciences of the USSR, 405 p. [in Russian]Google Scholar
Petrushevskaya, M.G., 1984, [On the classification of Polycystine radiolarians], in Petrushevskaya, M.G., and Stepanjants, S.D., eds., Morphology, Ecology and Evolution of Radiolarians. Material from the IV symposium of European radiolarists EURORAD IV: Leningrad, USSR, Akademiya Nauk SSSR, Zoological Institute, p. 124149. [in Russian]Google Scholar
Petrushevskaya, M.G., and Kozlova, G.E., 1972, Radiolaria: Leg 14, Deep Sea Drilling Project, in Hayes, D.E., Pimm, A.C., Beckmann, J.P., Benson, W.E., Berger, W.H., Roth, P.H., Supko, P.R., and von Rad, U., eds., Initial Reports DSDP, 14: Washington, DC, USA, U.S. Government Printing Office, p. 495648.Google Scholar
Pouille, L., Obut, O., Danelian, T., and Sennikov, N., 2011, Lower Cambrian (Botomian) polycystine Radiolaria from the Altai Mountains (southern Siberia, Russia): Comptes Rendus Palevol 10, 627633.CrossRefGoogle Scholar
Renaudie, J., and Lazarus, D.B., 2012, New species of Neogene radiolarians from the Southern Ocean: Journal of Micropalaeontology, v. 31, p. 2952.CrossRefGoogle Scholar
Renaudie, J., and Lazarus, D.B., 2015, New species of Neogene radiolarians from the Southern Ocean–part III: Journal of Micropalaeontology, v. 34, p. 181209.CrossRefGoogle Scholar
Renz, G.W., 1984, Cenozoic radiolarians from the Barbados Ridge, Lesser Antilles subduction complex, Deep Sea Drilling Project Leg 78A, in Biju-Duval, B., Moore, J.C., Bergen, J.A., Blackinton, G., Claypool, , et al., eds., Initial Reports DSDP, 78A: Washington, DC, USA, U.S. Government Printing Office, p. 447462.Google Scholar
Riedel, W.R., 1957, Radiolaria: a preliminary stratigraphy, in Petterson, H., ed., Reports of the Swedish Deep-Sea Expedition, 1947–1948: Elanders Boktryckeri Aktiebolag, Göteborg, Sweden, v. 6, p. 5996.Google Scholar
Riedel, W., 1967, Subclass Radiolaria, in Harland, W.B., ed., The Fossil Record: London, Geological Society of London, p. 291298.Google Scholar
Riedel, W.R., and Sanfilippo, A., 1970, Radiolaria, Leg 4, Deep Sea Drilling Project, in Bader, R.G., Gerard, R.D., Benson, W.E., Bolli, H.M., Hay, W.W., Rothwell, T. Jr., Ruef, M.H., Riedel, W.R., and Sayles, F.L., eds., Initial Reports DSDP, 4: Washington, DC, USA, U.S. Government Printing Office, p. 503575.Google Scholar
Riedel, W.R., and Sanfilippo, A., 1971, Cenozoic Radiolaria from the western equatorial Pacific, Leg 7, in Winterer, E.L., Riedel, W.R., Brönnimann, P., Gealy, E.L., Heath, G.R., Kroenke, L., Martini, E., Moberly, R. Jr., Resig, J., and Worsley, T., eds., Initial Reports DSDP, 7: Washington, DC, USA, U.S. Government Printing Office, p. 15291672.Google Scholar
Riedel, W.R., and Sanfilippo, A., 1978, Stratigraphy and evolution of equatorial Cenozoic radiolarians: Micropaleontology, v. 24, p. 6196.CrossRefGoogle Scholar
Sandin, M.M., Pillet, L., Biard, T., Poirier, C., Bigeard, E., Romac, S., Suzuki, N., and Not, F., 2019, Time calibrated morpho-molecular classification of Nassellaria (Radiolaria): Protist, v. 170, p. 187208.CrossRefGoogle ScholarPubMed
Sanfilippo, A., and Blome, C.D., 2001, Biostratigraphic implications of mid-latitude Palaeocene–Eocene radiolarian faunas from Hole 1051A, ODP Leg 171B, Blake Nose, western North Atlantic, in Kroon, D., Norris, R.D., and Klaus, A., eds., Western North Atlantic Palaeogene and Cretaceous Palaeoceanography: Geological Society, London, Special Publications 183, p. 185224.Google Scholar
Sanfilippo, A., and Caulet, J.-P., 1998, Taxonomy and evolution of Paleogene Antarctic and tropical Lophocyrtid radiolarians: Micropaleontology, v. 44, p. 143.CrossRefGoogle Scholar
Sanfilippo, A., and Riedel, W.R., 1973, Cenozoic Radiolaria (exclusive of theoperids, artostrobiids and amphipyndacids) from the Gulf of Mexico, DSDP Leg 10, in Worzel, J.L., Bryant, W., Beall, A.O. Jr., Capo, R., Dickinson, K., Foreman, H.P., Laury, R., McNeely, B.W., and Smith, L.A., eds., Initial Reports DSDP, 10: Washington, DC, USA, U.S. Government Printing Office, p. 475611.Google Scholar
Sanfilippo, A., and Riedel, W.R., 1982, Revision of the radiolarian genera Theocotyle, Theocotylissa and Thyrsocyrtis: Micropaleontology, v. 28, p. 170188.CrossRefGoogle Scholar
Sanfilippo, A., and Riedel, W.R., 1992, The origin and evolution of Pterocorythidae (Radiolaria); a Cenozoic phylogenetic study: Micropaleontology, v. 38, p. 136.CrossRefGoogle Scholar
Sanfilippo, A., Westberg-Smith, M.J., and Riedel, W.R., 1985, Cenozoic Radiolaria, in Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K., eds., Plankton Stratigraphy: Cambridge, UK, Cambridge University Press, p. 631712.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671675.Google ScholarPubMed
Shilov, V.V., 1995, Eocene–Oligocene radiolarians from Leg 145, North Pacific, in Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F., eds., Proceedings of the Ocean Drilling Program, Scientific Results 145: Ocean Drilling Program, College Station, TX, p. 117132.Google Scholar
Strong, C.P., Hollis, C.J., and Wilson, G.J., 1995, Foraminiferal, radiolarian, and dinoflagellate biostratigraphy of Late Cretaceous to middle Eocene pelagic sediments (Muzzle Group), Mead Stream, Marlborough, New Zealand: New Zealand Journal of Geology and Geophysics, v. 38, p. 171209.CrossRefGoogle Scholar
Sugiyama, K., 1993, Skeletal structures of lower and middle Miocene lophophaenids (Radiolaria) from central Japan: Transactions and Proceedings of the Palaeontological Society of Japan, n. ser., v. 169, p. 4472.Google Scholar
Sugiyama, K., 1998, [Nassellarian fauna from the Middle Miocene Oidawara Formation], Mizunami Group, central Japan: News of Osaka Micropaleontologists, Special Volume 11, p. 227250. [in Japanese].Google Scholar
Sugiyama, K., and Furutani, H., 1992, Middle Miocene radiolarians from the Oidawara Formation, Mizunami Group, Gifu Prefecture, central Japan: Bulletin of the Mizunami Fossil Museum, v. 19, p. 199213.Google Scholar
Suzuki, N., O'Dogherty, L., Caulet, J.-P., and Dumitrică, P., 2021, A new integrated morpho- and molecular systematic classification of Cenozoic radiolarians (Class Polycystinea)—suprageneric taxonomy and logical nomenclatorial acts: Geodiversitas, v. 43, p. 405573.CrossRefGoogle Scholar
Takemura, A., and Ling, H.Y., 1998, Taxonomy and phylogeny of the genus Theocorys (Nassellaria, Radiolaria) from the Eocene and Oligocene sequences in the Antarctic region: Paleontological Research, v. 2, p. 155169.Google Scholar
Tetard, M., Marchant, R., Cortese, G., Gally, Y., de Garidel-Thoron, T., and Beaufort, L., 2020, A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow: Climate of the Past, v. 16, p. 24152429.CrossRefGoogle Scholar
Witkowski, J., Bohaty, S.M., McCartney, K., and Harwood, D.M., 2012, Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 326–328, p. 7894.CrossRefGoogle Scholar