Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T13:27:17.820Z Has data issue: false hasContentIssue false

On ex situ Ophiomorpha and other burrow fragments from the Rio Grande do Sul Coastal Plain, Brazil: paleobiological and taphonomic remarks

Published online by Cambridge University Press:  27 May 2020

Giovana Pedrol de Freitas
Affiliation:
Laboratório de Geologia e Paleontologia and Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália Km 8, Rio Grande, 96201-900, Rio Grande do Sul, Brazil
Heitor Francischini
Affiliation:
Laboratório de Paleontologia de Vertebrados and Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Caixa Postal 15.001, 91501-970, Rio Grande do Sul, Brazil
Frederico Tapajós de Souza Tâmega
Affiliation:
Laboratório de Geologia e Paleontologia and Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália Km 8, Rio Grande, 96201-900, Rio Grande do Sul, Brazil
Paula Spotorno-Oliveira
Affiliation:
Laboratório de Geologia e Paleontologia and Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália Km 8, Rio Grande, 96201-900, Rio Grande do Sul, Brazil
Paula Dentzien-Dias
Affiliation:
Laboratório de Geologia e Paleontologia and Programa de Pós-Graduação em Oceanologia, Instituto de Oceanografia, Universidade Federal do Rio Grande, Avenida Itália Km 8, Rio Grande, 96201-900, Rio Grande do Sul, Brazil

Abstract

The Rio Grande do Sul Coastal Plain (southern Brazil) is composed of extensive marine and continental deposits related to at least four lagoon-barrier systems of Pleistocene−Holocene age. Part of these deposits is currently submerged and passing through erosion processes by waves. Vertebrate and invertebrate body and trace fossils are constantly exhumed from these deposits and redeposited on the modern beach face. Among them, a total of 253 fragments of crustacean burrows were collected for this study. Two ichnospecies of Ophiomorpha Lundgren, 1891 were recognized (O. nodosa Lundgren, 1891 and O. puerilis Gibert et al., 2006), but most of the materials can only be assigned to the ‘SOT’ group (Spongeliomorpha de Saporta, 1887, Ophiomorpha, and Thalassinoides Ehrenberg, 1944), mainly because of the lack of a pelleted lining. The absence of pellets and, as a consequence, the ichnotaxonomy of these specimens, is related to taphonomical processes (exhumation, reworking, and transportation) that acted during formation of the ex situ assemblage. The paleoenvironmental dynamics and a taphonomical model are presented to demonstrate how these processes affected the trace fossils since their construction, through exhumation until deposition. Neoichnological observations led us to infer larger producers in comparison to the extant ghost shrimp Sergio mirim (Rodrigues, 1971).

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo, R.J., and Souza, M.C., 2014, Revisão conceitual de indicadores costeiros de paleoníveis marinhos quaternários no Brasil: Quaternary and Environmental Geosciences, v. 5, p. 132, doi:10.5380/abequa.v5i2.36533.CrossRefGoogle Scholar
Baird, G.C., 1978, Pebbly phosphorites in shale: A key to recognition of a widespread submarine discontinuity in the Middle Devonian of New York: Journal of Sedimentary Petrology, v. 48, p. 545555.Google Scholar
Balson, P.S., 1980, The origin and evolution of Tertiary phosphorites from eastern England: Journal of the Geological Society of London, v. 137, p. 723729.CrossRefGoogle Scholar
Barboza, E.G., Rosa, M.L.C.C., and Ayup-Zouain, R.N., 2008, Cronoestratigrafia da Bacia de Pelotas: Uma revisão das sequências deposicionais: Gravel, v. 6, p. 125138.Google Scholar
Bertling, M., Braddy, S.J., Bromley, R.G., Demathieu, G.R., Genise, J., Mikuláš, R., Nielsen, J.K., Nielsen, K.S.S., Rindsberg, A.K., Schlirf, M., and Uchman, A., 2006, Names for trace fossils: A uniform approach: Lethaia, v. 39, p. 265286, doi:10.1080/00241160600787890.Google Scholar
Brett, C.E., and Baird, G.C., 1991, Submarine erosion on the anoxic sea floor: Stratinomic, palaeoenvironmental, and temporal significance of reworked pyrite-bone deposits, in Tyson, R.V., and Pearson, T.H., eds., Modern and Ancient Continental Shelf, Anoxia: London, Geological Society of London, p. 233257.Google Scholar
Bromley, R.G., and Asgaard, U., 1993, Two bioeosion ichnofacies produced by early and late burial associated with sea-level change: Geologische Rundschau, v. 82, p. 276280.CrossRefGoogle Scholar
Bromley, R.G., and Ekdale, A.A., 1998, Ophiomorpha irregulaire (trace fossil): Redescription from the Cretaceous of the Book Cliffs and Wasatch Plateau, Utah: Journal of Paleontology, v. 72, p. 773778.CrossRefGoogle Scholar
Bromley, R.G., and Frey, R.W., 1974, Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha: Bulletin of the Geological Society of Denmark, v. 23, p. 311335.Google Scholar
Buatois, L.A., and Mángano, M.G., 2011, The basics of ichnology, in Buatois, L.A., and Mángano, M.G., eds., Ichnology: Organism-Substrate Interactions in Space and Time: Cambridge, UK, Cambridge University Press, p. 524.CrossRefGoogle Scholar
Buatois, L.A., Bromley, R.G., Mángano, M.G., Bellosi, E., and Carmona, N., 2003, Ichnology of shallow marine deposits in the Miocene Chenque Formation of Patagonia: Complex ecologic structure and niche partitioning in Neogene ecosystems: Asociación Paleontologica Argentina, Publicación Especial 9, p. 8595.Google Scholar
Bueno, G.V., Zacharias, A.A., Oreiro, S.G, Cupertino, J.A., Falkenhein, F.U.H., and Martins Neto, M.A., 2007, Bacia de Pelotas: Boletim de Geociências da Petrobrás, v. 15, p. 551559.Google Scholar
Chamberlain, C.K., and Baer, J.L., 1973, Ophiomorpha and a new thalassinid burrow from the Permian of Utah: Brigham Young University Geology Studies, v. 20, p. 7994.Google Scholar
Clifton, H.E., and Thompson, J.K., 1978, Macaronichnus segregatis: A feeding structure of shallow marine polychaetes: Journal of Sedimentary Petrology, v. 48, p. 12931302.Google Scholar
Corrêa, I.C.S., 1996, Les variations du niveau de la mer durant les derniers 17.500 ans BP: l'exemple de la plate-forme continentale du Rio Grande do Sul-Brésil: Marine Geology, v. 130, p. 163178.CrossRefGoogle Scholar
Corrêa, I.C.S., Ayup-Zouain, R.N., Weschenfelder, J., and Tomazelli, L.J., 2008, Áreas fontes dos minerais pesados e sua distribuição sobre a plataforma continental sul-Brasileira, Uruguaia e norte-Argentina: Pesquisas em Geociências, v. 5, p. 137150, doi:10.22456/1807-9806.17899.CrossRefGoogle Scholar
Dahmer, G., 1937, Lebensspuren aus dem Taunusquarzit und den Siegener Schichten (Unterdevon): Preussische Geologische Landesanstalt zu Berlin Jahrbuch, v. 57, p. 523539.Google Scholar
de Saporta, G., 1887, Nouveaux documents relatifs aux organismes problematiques des anciens mers: Bulletin de la Société Géologique du France, v. 15, p. 286302.Google Scholar
Dillenburg, S.R., Tomazelli, L.J., and Barboza, E.G., 2004, Barrier evolution and placer formation at Bujuru southern Brazil: Marine Geology, v. 203, p. 4356, doi:10.1016/S0025-3227(03)00330-X.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Tomazelli, L.J., Hesp, P.A., Clerot, L.C., and Ayup-Zouain, R.N., 2009, The Holocene coastal barriers of Rio Grande do Sul, in Dillenburg, S.R., and Hesp, P.A., eds., Geology and Geomorphology of Holocene Coastal Barriers of Brazil: Berlin, Springer, p. 5391.CrossRefGoogle Scholar
Ehrenberg, K., 1944, Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse: Paläontologische Zeitschrift, v. 23, p. 354359.CrossRefGoogle Scholar
Frey, R.W., Howard, J.D., and Pryor, W.A., 1978, Ophiomorpha: Its morphologic, taxonomic, and environmental significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 23, p. 199229.CrossRefGoogle Scholar
Frey, R.W., Curran, A.H., and Pemberton, G.S., 1984, Tracemaking activities of crabs and their environmental significance: The ichnogenus Psilonichnus: Journal of Paleontology, v. 58, p. 511528.Google Scholar
Gibert, J.M., de Netto, R.G., Tognoli, F.M., and Grangeiro, M.E., 2006, Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 230, p. 7084, doi:10.1016/j.palaeo.2005.07.008.CrossRefGoogle Scholar
Gingras, M.K., Rasanen, M., and Ranzi, A., 2002, The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimoes Formation, Rio Acre, Amazonia Brazil: Palaios, v. 17, p. 591601, doi:10.1669/0883-1351(2002)017<0591:TSOBIH>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Goldring, R., Cadée, C.G., and Pollard, E.J., 2007, Climatic control of marine trace fossil distribution, in Miller, W., ed., Trace Fossils: Concepts, Problems, Prospects: Amsterdam, Elsevier, p. 159171.CrossRefGoogle Scholar
Griffis, R.B., and Suchanek, T.H., 1991, A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea): Marine Ecology Progress Series, v. 79, p. 171183.CrossRefGoogle Scholar
Hyžný, M., and Klompmaker, A.A., 2015, Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): A perspective from the fossil record: Arthropod Systematics and Phylogeny, v. 73, p. 401437.Google ScholarPubMed
Hyžný, M., Duane, M.J., Reinink-Smith, L.M., Eastoe, C., and Hudáčková, N., 2018, Taphonomy of ghost shrimps (Decapoda: Axiidea: Callianassidae) associated with their burrows within a middle Miocene mud volcano complex of Persian (Arabian) Gulf, Kuwait: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 511, p. 218231, doi:10.1016/j.palaeo.2018.08.006.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J., 1984, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta 18O record, in Berger, A., ed., Milankovitch and Climate, Part 1: Dordrecht, Netherlands, Reidel Publishing Company, p. 269305.Google Scholar
Keij, A.J., 1965, Miocene trace fossils from Borneo: Palaontologische Zeitschrift, v. 39, p. 220228.CrossRefGoogle Scholar
Kennedy, W.J., and MacDougall, J.D.S., 1969, Crustacean burrows in the Weald Clay (Lower Cretaceous) of south-eastern England and their environmental significance: Palaeontology, v. 12, p. 459471.Google Scholar
Kennedy, W.J., and Sellwood, B.W., 1969, Ophiomorpha nodosa Lundgren, a marine indicator from the Sparnacian of south-east England: Proceedings of the Geologists’ Association, v. 81, p. 99110, doi:10.1016/S0016-7878(70)80038-4.CrossRefGoogle Scholar
Leymerie, A., 1842, Suite de mémoire sur le terrain Crétacé du département de l'Aube: Mémoires de la Société Géologique de France, v. 5, p. 134.Google Scholar
Lopes, R.P., 2013, Biostratigraphy of the Pleistocene fossiliferous deposits of southern Brazilian coastal area: Journal of Mammalian Evolution, v. 20, p. 6982, doi:10.1007/s10914-011-9173-y.CrossRefGoogle Scholar
Lowe, J.J., and Walker, M., 2015, Geomorphological evidence, in Lowe, J.J., and Walker, M.J.C., eds., Reconstructing Quaternary Environments: New York, Routledge, p. 1992.Google Scholar
Lundgren, S.A.B., 1891, Studier öfver fossilförande lösa block: Geologiska Föreningen I Stockholm Förhandlingar, v. 7, p. 721724.CrossRefGoogle Scholar
MacEachern, J.A., Pemberton, S.G., Gingras, M.K., and Bann, K.L., 2007, The ichnofacies paradigm: A fifty-year retrospective, in Miller, W., ed., Trace Fossils: Concepts, Problems, Prospects: Amsterdam, Elsevier, p. 5277.CrossRefGoogle Scholar
MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S.E., and Pemberton, S.G., 2012, The ichnofacies paradigm, in Knaust, D., and Bromley, R., eds., Trace Fossils as Indicators of Sedimentary Environments: Amsterdam, Elsevier, p. 103138.CrossRefGoogle Scholar
Martins, D.C., Cancelli, R.R., Lopes, R.P., Hadler, P., Testa, E.H., and Barboza, E.G., 2018, Ocorrência de Ophiomorpha nodosa em sedimentos pleistocênicos da Planície Costeira da Pinheira, Santa Catarina, Brasil: Revista Brasileira de Paleontologia, v. 21, p. 7986, doi:10.4072/rbp.2018.1.06.CrossRefGoogle Scholar
Miller, M.F., and Curran, H.A., 2001, Behavioral plasticity of modern and Cenozoic burrowing thalassinidean shrimp: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 166, p. 219236, doi:10.1016/S0031-0182(00)00210-8.CrossRefGoogle Scholar
Netto, R.G., and Rossetti, D.F., 2003, Ichnology and salinity fluctuations: A case study in the early Miocene (Lower Barreiras Succession) of São Luís Basin, Maranhão, Brazil: Revista Brasileira de Paleontologia, v. 6, p. 518.Google Scholar
Netto, R.G., Tognoli, F.M.W., Gandini, R., Lima, J.H.D., and Gibert, J.M., 2012, Ichnology of the Phanerozoic deposits of southern Brazil, in Netto, R.G., Carmona, N.B., and Tognoli, F.M.W., eds., Ichnology of Latin America—Selected Papers: Porto Alegre, Brazil, Sociedade Brasileira de Paleontologia, p. 3768.Google Scholar
Netto, R.G., Curran, H.A., Belaústegui, Z., and Tognoli, F.M., 2017, Solving a cold case: New occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 475, p. 93105, doi:10.1016/j.palaeo.2017.03.013.CrossRefGoogle Scholar
Nickell, L.A., and Atkinson, R.J.A., 1995, Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology: Marine Ecology Progress Series, v. 128, p. 181197.CrossRefGoogle Scholar
Rindsberg, A.K., 2018, Ichnotaxonomy as a science: Annales Societas Geologorum Poloniae, v. 88, p. 91110, doi:10.14241/asgp.2018.012.Google Scholar
Rodrigues, S.A., 1971, Mud shrimps of the genus Callianassa leach from the Brazilian coast (Crustacea, Decapoda): Arquivos de Zoologia, v. 20, p. 191223.CrossRefGoogle Scholar
Rossetti, D.F., and Góes, A.M., 2009, Marine influence in the Barreiras Formation, State of Alagoas, northeastern Brazil: Anais da Academia Brasileira de Ciências, v. 81, p. 741755, doi:10.1590/S0001-37652009000400012.CrossRefGoogle Scholar
Rossetti, D.F., Góes, A.M., Truckenbrodt, W., and Anaisse, J. Jr., 2000, Tsunami induced large-scale scour-and-fill structures in late Albian to Cenomanian deposits of Grajaú Basin, northern Brazil: Sedimentology, v. 47, p. 309323, doi:10.1046/j.1365-3091.2000.00292.x.CrossRefGoogle Scholar
Savrda, C.E., 2007, Taphonomy of trace fossils, in Miller, W., ed., Trace Fossils: Concepts, Problems, Prospects: Amsterdam, Elsevier, p. 92109.CrossRefGoogle Scholar
Savrda, C.E., Blanton-Hooks, A.D., Collier, J.W., Drake, R.A., Graves, R.L., Hall, A.G., Nelson, A.I., Slone, J.C., Williams, D.D., and Wood, A., 2000, Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern U.S.A.: Ichnos, v. 7, p. 227242, doi:10.1080/10420940009380162.CrossRefGoogle Scholar
Tâmega, F.T.S., Spotorno-Oliveira, P., Dentzien-Dias, P., Buchmann, F.S., Vieira, L.M., Macario, K., Nash, M., Guimarães, R.B., Francischini, H., and Bassi, D., 2019, Palaeoenvironmental dynamics of Holocene shoreface bryoliths from the southern coast of Brazil: The Holocene, v. 29, p. 662675, doi:10.1177/0959683618824739.CrossRefGoogle Scholar
Tchoumatchenco, P., and Uchman, A., 2001, The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic–Lower Cretaceous deep-water turbidite deposits of SW Bulgaria: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 169, p. 8599, doi:1016/S0031-0182(01)00218-8.CrossRefGoogle Scholar
Tognoli, F.M.W., and Netto, R.G., 2003, Ichnological signature of Paleozoic estuarine deposits from the Rio Bonito-Palermo succession, eastern Paraná Basin, Brazil: Publicación Especial de la Asociación Paleontológica Argentina, v. 9, p. 141155.Google Scholar
Tomazelli, L.J., and Dillenburg, S.R., 2007, Sedimentary facies and stratigraphy of a last interglacial coastal barrier in South Brazil: Marine Geology, v. 244, p. 3345, doi:10.1016/j.margeo.2007.06.002.CrossRefGoogle Scholar
Tomazelli, L.J., and Villwock, J.A., 2000, O Cenozóico do Rio Grande do Sul: Geologia da plani´cie costeira,in Holz, M., and De Ros, L.F., eds., Geologia do Rio Grande do Sul: Porto Alegre, Brazil, Centro de Investigação do Gondwana, Universidade Federal do Rio Grande do Sul, p. 375406.Google Scholar
Torrel, O.M., 1870, Pietrificata Suecana Formationis Cambricae: Lunds Universitetis Årsskrift, v. 2, p. 14.Google Scholar
Twitchett, R.J., and Barras, C.G., 2004, Ichnostratigraphy and mass extinctions, in McIlroy, D., ed., The Application of Ichnology to Paleoenvironmental and Stratigraphic Analysis: London, Geological Society, p. 397418.Google Scholar
Uchman, A., 2009, The Ophiomorpha rudis ichnosubfacies of Nereites ichnofacies: Characteristics and constraints: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 276, p. 107119, doi:10.1016/j.palaeo.2009.03.003.CrossRefGoogle Scholar
Uchman, A., Pervesler, P., Hohenegger, J., and Dominici, S., 2011, Ichnological record of environmental changes in early Quaternary (Gelasian–Calabrian) marine sediments of the Stirone section, northern Italy: Palaios, v. 26, p. 578593, doi:10.2110/palo.2010.p10-082r.Google Scholar
Verde, M., and Martínez, S., 2004, A new ichnogenus for crustacean trace fossils from the upper Miocene Camacho Formation of Uruguay: Palaeontology, v. 47, p. 3949, doi:10.1111/j.0031-0239.2004.00346.x.CrossRefGoogle Scholar
Villwock, J.A., 1984, Geology of the coastal province of Rio Grande do Sul, southern Brazil. A synthesis: Pesquisas em Geociências, v. 16, p. 549.CrossRefGoogle Scholar
Villwock, J.A., and Tomazelli, L.J., 1995, Geologia costeira do Rio Grande do Sul: Notas Técnicas, v. 8, p. 145.Google Scholar
Weimer, J.K.T., and Hoyt, J.H., 1964, Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments: Journal of Paleontology, v. 38, p. 761767.Google Scholar
White, C.R., 2005, The allometry of burrow geometry: Journal of Zoology, v. 265, p. 395403, doi:10.1017/S0952836905006473.CrossRefGoogle Scholar
Wu, N.C., Alton, L.A., Clemente, C.J., Kearney, M.R., and White, C.R., 2015, Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.): Journal of Experimental Biology, v. 218, p. 24162426, doi:10.1242/jeb.113803.CrossRefGoogle Scholar