Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T11:27:44.812Z Has data issue: false hasContentIssue false

Paleobiologic and evolutionary significance of corallite increase and associated features in Saffordophyllum newcombae (Tabulata, Late Ordovician, southern Manitoba)

Published online by Cambridge University Press:  14 July 2015

Dong-Jin Lee
Affiliation:
Department of Earth and Environmental Sciences, Andong National University, Andong 760-749, Korea
Robert J. Elias
Affiliation:
Department of Geological Sciences, The University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Abstract

Saffordophyllum newcombae Flower, 1961, displays unique abilities and an unprecedented range in types of corallite increase. Cerioid growth was characteristic, but colonies on soft substrates could grow in a tollinaform manner during early astogeny. The capacity for recovery from damage and partial mortality is amazing. Rejuvenation may have been accompanied by peripheral expansion in some cases. Rapid regeneration could involve axial increase. Circular lacunae that formed during recovery became sites of rapid lateral increase or corallite decrease.

Two types of axial increase occurred within coralla. Lateral increase was concentrated mainly along the basal wall and adjacent to certain circular lacunae. In typical cerioid parts of the corallum, lateral increase seldom yielded “adult” corallites, but incipient lateral offsets could be numerous. The level of colony integration was probably moderately high. There was likely soft-tissue continuity among polyps, coordination of polyp behavior, subjugation of individuals for the good of the colony, and perhaps astogenetic control.

Saffordophyllum newcombae is considered to be a tabulate coral, although one type of axial increase is similar to that in a few rugose corals and the other type of axial increase as well as possible peripheral expansion resemble modes of increase in some coralline sponges. Lateral increase is considered compatible with cnidarian rather than poriferan biology. Corallite size is typical of tabulates. Saffordophyllum may not be the direct ancestor of favositid tabulates, and may not even be closely related to them; S. newcombae is very different from Paleofavosites and Favosites.

The remarkable range in forms of increase discovered in S. newcombae demonstrates the critical need for detailed paleobiologic studies, if we are to understand the early evolutionary history of corals and to establish reliable criteria for distinguishing various coral groups and homeomorphs.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caramanica, F. P. 1992. Ordovician corals of the Red River-Stony Mountain Province, p. 2397. In Erickson, J. M. and Hoganson, J. W. (eds.), Proceedings of the F. D. Holland, Jr., Geological Symposium. North Dakota Geological Survey Miscellaneous Series, 76.Google Scholar
Coates, A. G., and Oliver, W. A. Jr. 1973. Coloniality in zoantharian corals, p. 327. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowdcn, Hutchinson & Ross, Inc., Stroudsburg.Google Scholar
Elias, R. J. 1981. Solitary rugose corals of the Selkirk Member, Red River Formation (late Middle or Upper Ordovician), southern Manitoba. Geological Survey of Canada Bulletin, 344, 53 p.Google Scholar
Elias, R. J. 1991. Environmental cycles and bioevents in the Upper Ordovician Red River-Stony Mountain solitary rugose coral province of North America, p. 205211. In Barnes, C. R. and Williams, S. H. (eds.), Advances in Ordovician Geology. Geological Survey of Canada Paper, 90-9.Google Scholar
Elias, R. J., and Lee, D.-J. 1993. Microborings and growth in Late Ordovician halysitids and other corals. Journal of Paleontology, 67:922934.CrossRefGoogle Scholar
Fedorowski, J. 1978. Some aspects of coloniality in rugose corals. Palaeontology, 21:177224.Google Scholar
Fedorowski, J. 1981. Some aspects of coloniality in corals. Acta Palaeontologica Polonica, 25:429437.Google Scholar
Fedorowski, J., and Jull, R. K. 1976. Review of blastogeny in Palaeozoic corals and description of lateral increase in some Upper Ordovician rugose corals. Acta Palaeontologica Polonica, 21:3778.Google Scholar
Flower, R. H. 1961. Part I: Montoya and related colonial corals. New Mexico State Bureau of Mines and Mineral Resources Memoir, 7:197.Google Scholar
Flower, R. H., and Duncan, H. M. 1975. Some problems in coral phylogeny and classification, p. 175192. In Pojeta, J. Jr. and Pope, J. K. (eds.), Studies in Paleontology and Stratigraphy. Bulletins of American Paleontology, 67(287).Google Scholar
Fuller, M. K., and Jenkins, R. J. F. 1994. Moorowipora chamberensis, a coral from the Early Cambrian Moorowie Formation, Flinders Ranges, South Australia. Royal Society of South Australia Transactions, 118:227235.Google Scholar
Fuller, M. K., and Jenkins, R. J. F. 1995. Arrowipora fromensis, a new genus and species of tabulate-like coral from the Early Cambrian Moorowie Formation, Flinders Ranges, South Australia. Royal Society of South Australia Transactions, 119:7582.Google Scholar
Hartman, W. D. 1983. Modern and ancient Sclerospongiae, p. 116129. In Broadhead, T. W. (ed.), Sponges and Spongiomorphs: Notes for a Short Course Organized by J. K. Rigby and C. W. Stearn. University of Tennessee Department of Geological Sciences Studies in Geology, 7.Google Scholar
Hartman, W. D. 1984. Astrorhizae, mamelons and symbionts of Recent sclerosponges, p. 305314. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Hartman, W. D., and Goreau, T. F. 1970. Jamaican coralline sponges: their morphology, ecology and fossil relatives. Zoological Society of London Symposia, 25:205243.Google Scholar
Hartman, W. D., and Goreau, T. F. 1972. Ceratoporella (Porifera: Sclerospongiae) and the chaetetid “corals,” p. 131148. In Deevey, E. S. (ed.), Growth by Intussusception: Ecological Essays in Honor of G. Evelyn Hutchinson. Connecticut Academy of Arts and Sciences Transactions, 44.Google Scholar
Hartman, W. D., and Goreau, T. F. 1975. A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla, 167, 21 p.CrossRefGoogle Scholar
Hill, D. 1981. Tabulata, p. F430F669. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part F: Coelenterata, Supplement 1, Rugosa and Tabulata, 2. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Hubmann, B. 1995. Zur Kenntnis der Parricidalsprossung bei Argutastrea Crickmay (Anthozoa, Rugosa). Österreichische Akademie der Wissenschaften, mathematische-naturwissenschaftliche Klasse, Sitzungsberichten, Abteilung I, 201:83100.Google Scholar
Jull, R. K. 1976. Septal development during hystero-ontogeny in the Ordovician tabulate coral Foerstephyllum . Journal of Paleontology, 50:380391.Google Scholar
Kendall, A. C. 1977. Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba. Bulletin of Canadian Petroleum Geology, 25:480504.Google Scholar
Kirkpatrick, R. 1911. On Merlia normani, a sponge with a siliceous and calcareous skeleton. Quarterly Journal of Microscopical Science, 56:657702.Google Scholar
Kirkpatrick, R. 1912. On the nature of stromatoporoids. Nature, 89:607.CrossRefGoogle Scholar
Lee, D.-J., and Elias, R. J. 1991. Mode of growth and life-history strategies of a Late Ordovician halysitid coral. Journal of Paleontology, 65:191199.CrossRefGoogle Scholar
Noble, J. P. A., and Lee, D.-J. 1990. Ontogenies and astogenies and their significance in some favositid and heliolitid corals. Journal of Paleontology, 64:515523.CrossRefGoogle Scholar
Nowiński, A. 1976. Tabulata and Chaetetida from the Devonian and Carboniferous of southern Poland. Palaeontologia Polonica, 35:1125.Google Scholar
Oekentorp, K. 1969. Kommensalismus bei Favositiden. Münsterische Forschungen zur Geologie und Paläontologic, 12:165217.Google Scholar
Okulitch, V. J. 1936. Streptindytes chaetetiae a new species of “parasitic” annelid found on Chaetetes radians . American Midland Naturalist, 17:983, 984.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1968. Some aspects of colony development in corals, p. 1634. In Macurda, D. B. Jr. (ed.), Paleobiological Aspects of Growth and Development, a Symposium. Paleontological Society Memoir 2 (Journal of Paleontology, 42(5), Supplement).CrossRefGoogle Scholar
Oliver, W. A. Jr. 1983. Symbioses of Devonian rugose corals, p. 261274. In Roberts, J. and Jell, P. A. (eds.), Dorothy Hill Jubilee Memoir. Association of Australasian Palaeontologists Memoir 1.Google Scholar
Oliver, W. A. Jr. 1986. Favositids are corals—further remarks. Fossil Cnidaria, 15(1.2):1921.Google Scholar
Oliver, W. A. Jr. and Coates, A. G. 1987. Phylum Cnidaria, p. 140193. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Scientific Publications, Palo Alto.Google Scholar
Pandolfi, J. M. 1989a. Developmental sequences in colonial corals: an overview, p. 6981. In Jell, P. A. and Pickett, J. W. (eds.), Fossil Cnidaria 5. Association of Australasian Palaeontologists Memoir 8.Google Scholar
Pandolfi, J. M. 1989b. Phylogenetic analysis of the early tabulate corals. Palaeontology, 32:745764.Google Scholar
Plusquellec, Y. 1968. De quelques commensaux de Coelentérés paléozoïques. Annales de la Société Géologique du Nord, 88:163172.Google Scholar
Sammarco, P. W. 1982. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Marine Ecology Progress Series, 10:5765.CrossRefGoogle Scholar
Scrutton, C. T. 1979. Early fossil cnidarians, p. 161207. In House, M. R. (ed.), Systematics Association Special Volume 12: The Origin of Major Invertebrate Groups. Academic Press, London.Google Scholar
Scrutton, C. T. 1983. Astogeny in the Devonian rugose coral Phillipsastrea nevadensis from northern Canada, p. 237259. In Roberts, J. and Jell, P. A. (eds.), Dorothy Hill Jubilee Memoir. Association of Australasian Palaeontologists Memoir 1.Google Scholar
Scrutton, C. T. 1984. Origin and early evolution of tabulate corals, p. 110118. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Scrutton, C. T. 1987. A review of favositid affinities. Palaeontology, 30:485492.Google Scholar
Scrutton, C. T. 1988. Patterns of extinction and survival in Palaeozoic corals, p. 6588. In Larwood, G. P. (ed.), Extinction and Survival in the Fossil Record. Systematics Association Special Volume 34.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51:177208.CrossRefGoogle Scholar
Scrutton, C. T. 1998. The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52:157.CrossRefGoogle Scholar
Scrutton, C. T., and Powell, J. H. 1981. Periodic development of dimetrism in some favositid corals. Acta Palaeontologica Polonica, 25:477491.Google Scholar
Sharkova, T. T. 1971. Tipy vegetativnogo razmnozheniya u tabulyat, p. 5661. In Dubatolov, V. N. (ed.), Tabulyaty i geliolitoidei paleozoya SSSR, Trudy II Vsesoyuznogo simpoziuma po izuchenyu iskopaemykh korallov SSSR, Volume I. Nauka, Moscow.Google Scholar
Sinclair, G. W. 1955. Some Ordovician halysitoid corals. Royal Society of Canada Transactions, Series 3, Section 4, 49:95103.Google Scholar
Sokolov, B. S. 1948. Kommensalizm u favozitid. Akademiya Nauk SSSR, Izvestiya, Seriya Biologicheskaya, 1:101110.Google Scholar
Sorauf, J. E., and Savarese, M. 1995. A Lower Cambrian coral from South Australia. Palaeontology, 38:757770.Google Scholar
Stel, J. H. 1976. The Paleozoic hard substrate trace fossils Helicosalpinx, Chaetosalpinx and Torquaysalpinx . Neues Jahrbuch für Geologie und Paläontologic, Monatshefte 1976, 12:726744.Google Scholar
Stel, J. H. 1978. Growth and reproduction in the tabulate Favosites forbesi from the Silurian of Gotland. Geologiska Föreningens i Stockholm Förhandlingar, 100:181188.CrossRefGoogle Scholar
Stel, J. H. 1979. Lateral increase in Paleofavosites asper (D'Orbigny, 1850) and other tabulates. Journal of Paleontology, 53:501505.Google Scholar
Stel, J. H., and Oekentorp, K. 1981. Desmidopora and Nodulipora: misfits in the coral world. Acta Palaeontologica Polonica, 25:403417.Google Scholar
West, R. R., and Clark, G. R. II. 1983. Chaetetids, p. 130140. In Broadhead, T. W. (ed.), Sponges and Spongiomorphs: Notes for a Short Course Organized by J. K. Rigby and C. W. Stearn. University of Tennessee Department of Geological Sciences Studies in Geology, 7.Google Scholar
West, R. R., and Clark, G. R. II. 1984. Paleobiology and biological affinities of Palaeozoic chaetetids, p. 337348. In Oliver, W. A. Jr., Sando, W. J., Cairns, S. D., Coates, A. G., Macintyre, I. G., Bayer, F. M., and Sorauf, J. E. (eds.), Recent Advances in the Paleobiology and Geology of the Cnidaria. Palaeontographica Americana, 54.Google Scholar
Westrop, S. R., and Ludvigsen, R. 1983. Systematics and paleoecology of Upper Ordovician trilobites from the Selkirk Member of the Red River Formation, southern Manitoba. Manitoba Department of Energy and Mines Geological Report, 82-2, 51 p.Google Scholar
Wright, A. J. T. 1966. Cerioid Stringophyllidae (Tetracoralla) from Devonian strata in the Mudgee District, New South Wales. Linnean Society of New South Wales Proceedings, 90:264273.Google Scholar
Young, G. A. 1999. Fossil colonial corals: colony type and growth form, p. 647666. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, London.Google Scholar
Young, G. A., and Elias, R. J. 1993. Biometry and intraspecific variation in favositid and heliolitid corals, p. 283291. In Oekentorp-Küster, P. (ed.), Proceedings of the VI. International Symposium on Fossil Cnidaria and Porifera held in Münster, Germany 9.-14. September 1991. Courier Forschungsinstitut Senckenberg, 164.Google Scholar
Young, G. A., and Elias, R. J. 1995. Latest Ordovician to earliest Silurian colonial corals of the east-central United States. Bulletins of American Paleontology, 108(347), 148 p.Google Scholar
Young, G. A., and Elias, R. J. 1999. Relationships between internal and external morphology in Paleofavosites (Tabulata): the unity of growth and growth form. Journal of Paleontology, 73:580597.CrossRefGoogle Scholar