Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T06:26:11.638Z Has data issue: false hasContentIssue false

Reinterpretation of Climactichnites Logan 1860 to include subsurface burrows, and erection of Musculopodus for resting traces of the trailmaker

Published online by Cambridge University Press:  14 July 2015

Patrick Ryan Getty
Affiliation:
Center for Integrative Geosciences, University of Connecticut, Storrs 06269,
James Whitey Hagadorn
Affiliation:
Department of Geology, Amherst College, Amherst, MA 01002,

Abstract

Based on a thorough examination of field and museum Climactichnites specimens, two species of this trace are recognized, each representing a unique behavioral variant produced by a soft-bodied animal in Late Cambrian intertidal environments. C. wilsoni represents surface-produced trails, whereas C. youngi is re-erected for burrows produced below the surface. Burrowing behavior is supported by: 1) the presence of C. youngi within, rather than on, the surface of beds; 2) the orientation of some burrows inclined to bedding; and 3) the occasional presence of distinct burrow fills. Burrows can also be distinguished morphologically from surface traces by the absence of lateral ridges and the presence of fine, mm-scale striations or grooves superimposed on the transverse bars and furrows. Burrowing behavior for the Climactichnites trailmaker was previously unknown and thus represents a new, although not entirely unexpected, behavior for this mollusk or mollusk-like animal. The body impression of the sedentary animal is removed to Musculopodus sedentarius n. igen. and isp. In the future, Musculopodus may be expanded to include the resting traces of other soft-bodied animals known from the fossil record. Currently, Climactichnites is known only from very shallow to emergent strata of North America; reports of this fossil in other parts of the world are misidentified trails produced by other animals.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, O. 1935. Vorzeitliche Lebensspuren. Gustav Fischer, Jena, 644 p.Google Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikulas, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: A uniform approach. Lethaia, 39:265286.CrossRefGoogle Scholar
Bjerstedt, T. W. and Erickson, J. M. 1989. Trace fossils and bioturbation in peritidal facies of the Potsdam-Theresa Formations (Cambrian-Ordovician), Northwest Adirondacks. Palaios, 4:203224.CrossRefGoogle Scholar
Brown, A. C. 1971. The ecology of the sandy beaches of Cape Peninsula, South Africa. Transactions of the Royal Society of South Africa, 39:281320.CrossRefGoogle Scholar
Burling, L. D. 1917. Protichnites and Climactichnites: A critical study of some Cambrian trails. American Journal of Science, Series 4, 44:387398.CrossRefGoogle Scholar
Clark, T. H. and Usher, J. L. 1948. The sense of Climactichnites . The American Journal of Science, 246:251253.CrossRefGoogle Scholar
Clarke, J. M. 1905. Report of the State Paleontologist, 1905. New York State Museum Bulletin, 80:3133.Google Scholar
Davis, R. B., Minter, N. J., and Braddy, S. J. 2007. The neoichnology of terrestrial arthropods. Palaeogeography, Palaeoclimatology, and Palaeoecology, 255:284307.CrossRefGoogle Scholar
Dawson, J. W. 1890. On burrows and tracks of invertebrate animals in Paleozoic rocks, and other markings. Geological Survey of London Quarterly Journal, 46:595617.CrossRefGoogle Scholar
De, C., Das, D. P., and Raha, P. K. 1994. Ichnostratigraphic and paleoenvironmental significance of trace fossils from Tal Formation of Nigali Dhar Syncline, Sirmur District, Himachal Pradesh, India. Indian Journal of Geology, 66:7790.Google Scholar
Dott, R. H., Byers, C. W., Fielder, G. W., Stenzel, S. R., and Winfree, K. E. 1986. Aeolian to marine transition in the Cambro-Ordovician cratonic sheet sandstones of the northern Mississippi valley, U.S.A. Sedimentology, 33:345367.Google Scholar
Driese, S. G., Byers, C. W., and Dott, R. H. Jr. 1981. Tidal deposition in the basal Upper Cambrian Mt. Simon Formation in Wisconsin. Journal of Sedimentary Petrology, 51:367381.Google Scholar
Fedonkin, M. A. 2003. The origin of the metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.CrossRefGoogle Scholar
Gehling, J. G. 1996. Taphonomy of the Terminal Proterozoic Ediacaran Biota, South Australia. Unpublished Ph.D. dissertation, University of California, Los Angeles, 282 p.Google Scholar
Getty, P. R. 2007. Paleobiology of the Climactichnites trackmaker: An enigmatic Late Cambrian animal known only from trace fossils. Unpublished M.S. thesis, University of Massachusetts, Amherst, 130 p.Google Scholar
Getty, P. R. and Hagadorn, J. W. 2005. Small Climactichnites trackways: Their abundance and implications for trackmaker physiology. Geological Society of America Abstracts with Programs, 37(7):486.Google Scholar
Getty, P. R. and Hagadorn, J. W. 2006. Producing and preserving Climactichnites . Geological Society of America Abstracts with Programs, 38(7):475.Google Scholar
Getty, P. R. and Hagadorn, J. W. In press. Palaeobiology of the Climactichnites trackmaker. Palaeontology, 46 ms p.Google Scholar
Gräff, I. E. 1956. Die fährten von Littorina littorea Linné (Gastr.) in verschiedenen sedimenten. Senekenbergiana lethaea, 37:305317.Google Scholar
Hagadorn, J. W. and Bottjer, D. J. 1999. Restriction of a characteristic Late Neoproterozoic biotope: Suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios, 14:7385.CrossRefGoogle Scholar
Häntzschel, W. 1938. Quer-gliederung bei Littorina-fährten, ein beitrag zur deutung von Keckia annulata Glocker. Senckenbergiana , 20:297304.Google Scholar
Houseknecht, D. W. and Ethridge, F. G. 1978. Depositional history of the Lamotte Sandstone of Southeastern Missouri. Journal of Sedimentary Petrology, 48:575586.Google Scholar
Hoxie, C. T. and Hagadorn, J. W. 2005. Late Cambrian arthropod trackways in subaerially exposed environments. Geological Society of America Abstracts with Programs, Northeastern Section, 37(1):12.Google Scholar
ICZN (International Commission for Zoological Nomenclature). 1999. International Code of Zoological Nomenclature, adopted by the International Union of Biological Sciences, 4th edition. International Trust for Zoological Nomenclature, London, 232 p.Google Scholar
Ivantsov, A. Y. and Malakhovskaya, Y. E. 2002. Giant traces of Vendian animals. Doklady Earth Sciences, 35A:618622.Google Scholar
Knox, L. W. and Miller, M. F. 1985. Environmental control of trace fossil morphology, p. 167176. In Curran, H. A. (ed.), Biogenic structures: Their use in interpreting depositional environments. Society of economic paleontologists and mineralogists, Tulsa.CrossRefGoogle Scholar
Logan, W. E. 1860. On the track of an animal lately found in the Potsdam Formation. The Canadian Naturalist and Geologist, 5:279285.Google Scholar
Luo, H., Yong-He, T., and Shun-Ming, G. 1994. Early Cambrian traces near Kunming, Yunnan. Acta Palaeontologica Sinica, 33:676685.Google Scholar
MacNaughton, R. B., Cole, J. M., Dalrymple, R. W., Braddy, S. J., Briggs, D. E. G., and Lukie, T. D. 2002. First steps on land: Arthropod trackways in Cambrian-Ordovician eolian sandstone, southeastern Ontario, Canada. Geology, 30:391394.2.0.CO;2>CrossRefGoogle Scholar
MacNaughton, R. B., Hagadorn, J. W., and Dott, R. H. Jr. 2003: Did the Climactichnites organism leave the water? Palaeoecological insights from the Upper Cambrian of central Wisconsin. Canadian Paleontology Conference, Proceedings, Geological Association of Canada, 1:2627.Google Scholar
McIlroy, D. and Heys, G. R. 1997. Palaeobiological significance of Plagiogmus arcuatus from the Lower Cambrian of Central Australia. Alcheringa, 21:161178.CrossRefGoogle Scholar
McIlroy, D. and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaois, 14:5872.CrossRefGoogle Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. The John Hopkins University Press, Baltimore, 308 p.Google Scholar
Raymond, P. E. 1922. Seaside notes. American journal of Science, 3:108114.CrossRefGoogle Scholar
Runkel, A. C., McKay, R. M., and Palmer, A. R. 1998. Origin of a classic cratonic sheet sandstone: Stratigraphy across the Sauk II-Sauk III boundary in the Upper Mississippi Valley. Geological Survey of America Bulletin, 110:188210.2.3.CO;2>CrossRefGoogle Scholar
Schäfer, W. 1972. Ecology and Paleaeoecology of Marine Environments. Oliver and Boyd, Edinburgh, 568 pp.Google Scholar
Seilacher, A. 1995. Fossile Kunst. Albumblatter der Erdgeschichte, Goldschneckverlag Korb, 48 p.Google Scholar
Seilacher, A. 1997. Fossil Art. The Royal Tyrrell Museum of Paleontology, Drumheller, Alberta, 64 p.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer, New York, 226 p.Google Scholar
Seilacher, A. and Gamez-Vintaned, J. A. 1995. Psammichnites gigas: Ichnological expression of the Cambrian explosion. In Cherchi, A. (ed.), Proceedings. Sixth Paleobenthos International Symposium. Alghero, 28–30 October 1995. Dipartimento di Scienze della Terra, Università di Cagliari, Cagliari.Google Scholar
Sun, Y. C. 1924. Contributions to the Cambrian Faunas of North China. Geological Survey of China, Paleontologica Sinica, series B, 108 p.Google Scholar
Tiwari, M. and Parcha, S. K. 2006. Early Cambrian trace fossils from the Tal Formation of the Mussoorie Syncline, India. Current Science, 90:113119.Google Scholar
Todd, J. E. 1882. A description of some fossil tracks from the Potsdam Sandstone. Transactions of the Wisconsin Academy of Arts, Sciences, and Letters, 5:276281.Google Scholar
Trueman, E. R., and Brown, A. C. 1976. Locomotion, pedal retraction and extension, and the hydraulic systems of Bullia (Gastropoda: Nassaridae). Journal of Zoology, 178:365384.CrossRefGoogle Scholar
Uchman, A. and Pervesler, P. 2006. Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo delta tidal flat, Italy. Palaios, 21:384390.CrossRefGoogle Scholar
Walcott, C. D. 1912. Cambrian Geology and Paleontology, II: New York Potsdam-Hoyt Fauna. Smithsonian Miscellaneous Collections, 57:249304.Google Scholar
Wolf, R. R. and Dalrymple, R. W. 1984. Sedimentology of the Cambro-Ordovician sandstones of eastern Ontario, p. 240252. In Milne, V. G. (ed.), Geoscience Research Grant Program, Summary of Research, 1983–1984. Ontario Geological Survey Miscellaneous paper 121, Toronto.Google Scholar
Wolf, R. R. and Dalrymple, R. W. 1985. Sedimentology of the Cambro-Ordovician sandstones of eastern Ontario, p. 112118. In Milne, V. G. (ed.), Geoscience Research Grant Program, Summary of Research, 1984–1985. Ontario Geological Survey Miscellaneous paper 127, Toronto.Google Scholar
Woodworth, J. B. 1903. On the sedentary impression of the animal whose trail is known as Climactichnites. New York State Museum Bulletin, 69:959966.Google Scholar
Yesberger, W. L. 1982. Paleoenvironments and depositional history of the Upper Cambrian Lamotte Sandstone in southeast Missouri. Unpublished M.A. thesis, University of Missouri, Columbia, 282 p.Google Scholar
Yochelson, E. L. and Fedonkin, M. A. 1993. Paleobiology of Climactichnites, an enigmatic Late Cambrian fossil. Smithsonian Contributions to Paleobiology 74, 74 p.Google Scholar