Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-28T10:17:01.917Z Has data issue: false hasContentIssue false

Current-driven drift wave instability in a collisional dusty negative ion plasma

Published online by Cambridge University Press:  22 November 2013

M. ROSENBERG*
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA (rosenber@ece.ucsd.edu)

Abstract

The excitation of drift waves by an electron current parallel to the magnetic field is investigated in a nonuniform plasma composed of electrons, positive ions, negative ions, and massive, negatively charged dust. Electrostatic drift waves with frequencies smaller than the ion gyrofrequencies and wavelengths larger than the ion gyroradii are considered. Linear kinetic theory is used, and collisions of charged particles with neutrals are taken into account. The present results may be relevant to laboratory collisional magnetoplasmas containing negative ions and dust.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Annaratone, B. M. and Allen, J. E. 2005 J. Phys. D 38, 26.Google Scholar
Bogdankevich, L. S. and Rukhadze, A. A. 1966 Nucl. Fusion 6, 176.CrossRefGoogle Scholar
D'Angelo, N. 2004 J. Phys. D 37, 860.Google Scholar
Dupree, T. H. 1967 Phys. Fluids 10, 1049.CrossRefGoogle Scholar
Ellis, R. F. and Marden-Marshall, E. 1979 Phys. Fluids 22, 2137.CrossRefGoogle Scholar
Ellis, R. F. and Motley, R. W. 1971 Phys. Rev. Lett. 27, 1496.CrossRefGoogle Scholar
Ellis, R. F. and Motley, R. W. 1974 Phys. Fluids 17, 582.CrossRefGoogle Scholar
Fried, B. D. and Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Hatakeyama, R., Moon, C., Tamura, S. and Kaneko, T. 2011 Contrib. Plasma Phys. 51, 537.CrossRefGoogle Scholar
Ichiki, R., Kaneko, T., Hayashi, K., Tamura, S. and Hatakeyama, R. 2009 Plasma Phys. Control. Fusion 51, 035011.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic Press.Google Scholar
Kim, S.-H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118.CrossRefGoogle Scholar
Knist, S., Greiner, F., Biss, F. and Piel, A. 2011 Contrib. Plasma Phys. 51, 769.CrossRefGoogle Scholar
Krall, N. A. 1968 In: Advances in Plasma Physics, Vol. 1. New York: John Wiley, pp. 153199.Google Scholar
Mamun, A. A. and Shukla, P. K. 2003 Phys. Plasmas 10, 1518.CrossRefGoogle Scholar
Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009 Phys. Rev. E 80, 046406.Google Scholar
Merlino, R. L. and Kim, S.-H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
Ostrikov, K. N., Kumar, S. and Sugai, H. 2001 Phys. Plasmas 8, 3490.CrossRefGoogle Scholar
Rosenberg, M. and Krall, N. A. 1994 Planet. Space Sci. 42, 889.CrossRefGoogle Scholar
Saleem, H. 2010 J. Plasma Phys. 76, 337.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 2009 J. Plasma Phys. 75, 153.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y. and Bharuthram, R. 1991 J. Geophys. Res. 96, 21343.CrossRefGoogle Scholar
Thomas, E., Merlino, R. L. and Rosenberg, M. 2012 Plasma Phys. Control. Fusion 54, 124034.CrossRefGoogle Scholar
Yamada, M. and Hendel, H. W. 1978 Phys. Fluids 21, 1555.CrossRefGoogle Scholar