Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T15:42:46.590Z Has data issue: false hasContentIssue false

Drift eigenmodes in plasmas with negative ions

Published online by Cambridge University Press:  15 January 2010

HAMID SALEEM*
Affiliation:
National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 44000, Pakistan (saleemhpk@hotmail.com)

Abstract

The instabilities associated with drift waves can be suppressed (or even removed) by introducing negative ions into the usual electron ion plasma. The presence of negative ions causes a decrease in the amplitude of the perturbed electrostatic fields which are mainly produced by the difference of electron and ion masses. It is shown that the presence of negative ions is a stabilizing effect for drift eigenmode in a slab geometry and the frequency of this electrostatic mode is reduced. In a pure pair-ion plasma the convective cell mode can become unstable because of shear flow under certain conditions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D'Angelo, N. 1965 Phys. Fluids 8, 1748.CrossRefGoogle Scholar
Kourakis, I., Esfandyari-Kalijahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Phys. Plasmas 13, 052117.CrossRefGoogle Scholar
Levinton, F. M., Zarnstorff, M. C., Batha, S. H., Bell, M. R. E., Budny, R. V., Bush, C., Chang, O. Z., Fredrickson, E., Janos, A. et al. 1995 Phys. Rev. Lett. 75, 4417.CrossRefGoogle Scholar
Mahajan, S. M. and Shatashvili, N. L. 2008 Phys. Plasmas. 15, 100701.CrossRefGoogle Scholar
Mathews, G. F. 1995 J. Nucl. Mater. 220, 104.CrossRefGoogle Scholar
McCarthy, D. R. and Maurer, S. S. 1998 Phys. Rev. Lett. 81, 3399.CrossRefGoogle Scholar
Mohach, T., Gathen, V. S. der and Döbele, H. F. 2002 Contr. Plasma Phys. 42, 650.Google Scholar
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.CrossRefGoogle Scholar
Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett 95, 175003.CrossRefGoogle Scholar
Oohara, W. and Hatakeyama, R. 2007 Phys. Plasmas 14, 055704.Google Scholar
Oohara, W., Kuwabara, Y. and Hatakayama, R. 2007 Phys. Rev. E 75, 056403.Google Scholar
Saleem, H. 2007 Phys. Plasmas 14, 014505.Google Scholar
Saleem, H., Vranjes, J. and Poedts, S. 2006 Phys. Lett. A 350, 375.CrossRefGoogle Scholar
Saleem, H. 2006 Phys. Plasmas 13, 044502.CrossRefGoogle Scholar
Saleem, H., Vranjes, J. and Poedts, S. 2007 Phys. Plasmas 14, 072104.CrossRefGoogle Scholar
Schamel, H. and Luque, A. 2005 New J. Phys. 7, 69.CrossRefGoogle Scholar
Sen, S., Cairns, R. A., Storer, R. G. and McCarthy, D. R. 2000 Phys. Plasmas 7, 1192.Google Scholar
Shibagaki, K. and Kasaki, K. 2008 J. Phys. D: Appl. Phys. 41, 195204.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 044503.CrossRefGoogle Scholar
Shukla, P. K. and Khan, M. 2005 Phys. Plasmas 12, 014504.CrossRefGoogle Scholar
Takamura, S., Ohmo, N., Nishijima, D. and Uesugi, Y. 2002 Plasma Sources Sci. Technol. 11, A42.CrossRefGoogle Scholar
Verheest, F. 2006 Phys. Plasmas 13, 082301.CrossRefGoogle Scholar
Vranjes, H. and Poedts, S. 2005 Plasma Sources Sci. Technol. 14, 485.CrossRefGoogle Scholar
Weiland, J. 2000 Collective Modes in Inhomogeneous Plasma. IOP Publishing Bristol.Google Scholar