Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-14T23:43:49.990Z Has data issue: false hasContentIssue false

Emission of terahertz pulses from near-critical plasma slab under action of p-polarized laser radiation

Published online by Cambridge University Press:  21 February 2024

A.A. Frolov*
Affiliation:
Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia
*
Email address for correspondence: frolovaa@lebedev.ru

Abstract

The theory of the terahertz (THz) waves emission from a near-critical plasma slab under the action of the focused p-polarized laser pulse is developed. The spectral, angular and energy characteristics of the THz signal are studied as functions of the focusing degree and the incidence angle of laser radiation, as well as the density and thickness of the plasma slab. It is shown that the extremely strong increase in the energy of the THz signal (up to millijoule level) and conversion rate (up to 10 %) occurs at the almost normal incidence of the ultra-short, tightly focused p-polarized laser pulse on the thin plasma slab with the near-critical density and rare electron collisions.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dechard, J., Davoine, X., Gremillet, L. & Berg, L. 2020 Terahertz emission from submicron solid targets irradiated by ultraintense femtosecond laser pulses. Phys. Plasmas 27 (9), 093105.CrossRefGoogle Scholar
Dorranian, D., Starodubtsev, M., Kawakami, H., Ito, H., Yugami, N. & Nishida, Y. 2003 Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E 68 (2), 026409.CrossRefGoogle ScholarPubMed
Frolov, A.A. 2023 Terahertz waves emission from plasma under action of p-polarized tightly focused laser pulse. Eur. Phys. J. D 77 (6), 109 (1-12).CrossRefGoogle Scholar
Gopal, A., Herzer, S., Schmidt, A., Singh, P., Reinhard, A., Ziegler, W., Brommel, D., Karmakar, A., Gibbon, P., Dillner, U., May, T., Meyer, H.-G. & Paulus, G.G. 2013 Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator. Phys. Rev. Lett. 111 (7), 074802.CrossRefGoogle ScholarPubMed
Gupta, D.N., Jain, A., Kulagin, V.V., Hur, M.S. & Suk, H. 2022 Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma–vacuum interface. Appl. Phys. B 128 (3), 50.CrossRefGoogle Scholar
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. 1993 Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71 (17), 27252728.CrossRefGoogle ScholarPubMed
Jahangiri, F., Hashida, M., Nagashima, T., Tokita, S., Hangyo, M. & Sakabe, S. 2011 Intense terahertz emission from atomic cluster plasma produced by intense femtosecond laser pulses. Appl. Phys. Lett. 99 (26), 261503.CrossRefGoogle Scholar
Kadlec, F., Kuzel, P. & Coutaz, J.-L. 2004 Optical rectification at metal surfaces. Opt. Lett. 29 (22), 26742676.CrossRefGoogle ScholarPubMed
Kadlec, F., Kuzel, P. & Coutaz, J.-L. 2005 Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 30 (11), 14021404.CrossRefGoogle ScholarPubMed
Kwon, K.B., Kang, T., Song, H.S., Kim, Y.-K., Ersfeld, B., Jaroszynski, D.A. & Hur, M.S. 2018 High-energy, short-duration bursts of coherent terahertz radiation from an embedded plasma dipole. Sci. Rep. 8, 145.CrossRefGoogle ScholarPubMed
Liao, G. & Li, Y. 2023 Perspectives on ultraintense laser-driven terahertz radiation from plasmas. Phys. Plasmas 30 (9), 090602.CrossRefGoogle Scholar
Limpouch, J., Tikhonchuk, V.T., Dostál, J., Dudžák, R., Krupka, M., Borisenko, N.G., Nikl, J., Akunets, A.A., Borisenko, L.A. & Pimenov, V.G. 2020 Characterization of residual inhomogeneities in a plasma created by laser ionization of a low-density foam. Plasma Phys. Control. Fusion 62 (3), 035013.CrossRefGoogle Scholar
Mitrofanov, A.V., Voronin, A.A., Sidorov-Biryukov, D.A., Mitryukovsky, S.I., Fedotov, A.B., Serebryannikov, E.E., Meshchankin, D.V., Shumakova, V., Ališauskas, S., Pugžlys, A., Panchenko, V.Y.A., Baltuška, A. & Zheltikov, A.M. 2016 Subterawatt few-cycle mid-infrared pulses from a single filament. Optica 3 (3), 299302.CrossRefGoogle Scholar
Nagashima, T., Hirayama, H., Shibuya, K., Hangyo, M., Hashida, M., Tokita, S. & Sakabe, S. 2009 Terahertz pulse radiation from argon clusters irradiated with intense femtosecond laser pulses. Opt. Express 17 (11), 88078812.CrossRefGoogle Scholar
Nicolaï, P.H., Olazabal-Loumé, M., Fujioka, S., Sunahara, A., Borisenko, N., Gus'kov, S., Orekov, A., Grech, M., Riazuelo, G., Labaune, C., Velechowski, J. & Tikhonchuk, V. 2012 Experimental evidence of foam homogenization. Phys. Plasmas 19 (11), 113105.CrossRefGoogle Scholar
Oh, T.I., You, Y.S., Jhajj, N., Rosenthal, E.W., Milchberg, H.M. & Kim, K.Y. 2013 Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems. New J. Phys. 15 (7), 075002.CrossRefGoogle Scholar
Olver, F.W.J. 1974 Asymptotics and Special Functions. Academic Press.Google Scholar
Schroeder, C.B., Esarey, E., van Tilborg, J. & Leemans, W.P. 2004 Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69 (1), 016501.CrossRefGoogle Scholar
Silin, V.P. 1965 Nonlinear high-frequency plasma conductivity. Sov. Phys. JETP 20 (6), 15101516.Google Scholar
Song, H. & Nagatsuma, T. 2015 Handbook of Terahertz Technologies: Devices and Applications. Jenny Stanford Publishing.CrossRefGoogle Scholar
Sprangle, P., Penano, J.R., Hafizi, B. & Kapetanakos, C.A. 2004 Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69 (6), 066415.CrossRefGoogle ScholarPubMed
Suvorov, E.V., Akhmedzhanov, R.A., Fadeev, D.A., Ilyakov, I.F., Mironov, V.A. & Shishkin, B.V. 2012 Terahertz emission from a metallic surface induced by a femtosecond optic pulse. Opt. Lett. 37 (13), 25202522.CrossRefGoogle ScholarPubMed
Van Tilborg, J., Schroeder, C.B., Filip, C.V., Toth, C., Geddes, G.R., Fubiani, G., Huber, R., Kaindl, R.A., Esarey, E. & Leemans, W.P. 2006 Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96 (1), 014801.CrossRefGoogle ScholarPubMed
Vicario, C., Jazinsek, M., Ovchinnikov, A. V., Chefonov, O. V., Ashitkov, S. I., Agranat, M. B. & Hauri, C. P. 2015 High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express 23 (4), 45734580.CrossRefGoogle ScholarPubMed
Vicario, C., Ovchinnikov, A.V., Ashitkov, S.I., Agranat, M.B., Fortov, V.E. & Hauri, C.P. 2014 Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr: Mg2SiO4 laser. Opt. Lett. 39 (23), 66326635.CrossRefGoogle Scholar
Weiss, C., Wallenstein, R. & Beigang, R. 2000 Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces. Appl. Phys. Lett. 77 (25), 41604162.CrossRefGoogle Scholar
Welsh, G.H. & Wynne, K. 2009 Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces. Opt. Express 17 (4), 24702480.CrossRefGoogle ScholarPubMed
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. 2002 Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89 (6), 065003.CrossRefGoogle Scholar
Zhang, B., Ma, Z., Ma, J., Wu, X., Ouyang, C., Kong, D., Hong, T., Wang, X., Yang, P., Chen, L., Li, Y. & Zang, J. 2021 1.4-mj high energy terahertz radiation from lithium niobates. Laser Photonics Rev. 15 (3), 2000295.CrossRefGoogle Scholar