Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T09:33:16.918Z Has data issue: false hasContentIssue false

Modelling and numerical simulation of microwave pulse propagation in an air-breakdown environment

Published online by Cambridge University Press:  13 March 2009

J. Kim
Affiliation:
Weber Research Institute and Department of Electrical Engineering, Polytechnic University, Route 110, Farmingdale, New York 11735, U.S.A.
S. P. Kuo
Affiliation:
Weber Research Institute and Department of Electrical Engineering, Polytechnic University, Route 110, Farmingdale, New York 11735, U.S.A.
Paul Kossey
Affiliation:
Air Force Phillips Laboratory, Hanscom AFB, Massachusetts 01731, U.S.A.

Abstract

The dependences of the propagation characteristics of an intense microwave pulse on the intensity, frequency, width and shape of the pulse in an air- breakdown environment are examined. Numerical simulations lead to a useful empirical relation P3W = α = const, where P and W are the incident power and width of the pulse and α depends on the percentage of the pulse energy transferred from the source point to a given position. The results also show that, using a single unfocused microwave pulse transmitted upwards from the ground, the maximum electron density produced at, for example, 50 km altitude is limited by the tail erosion effect to below 106 cm-3. Repetitive-pulse and focused-beam approaches are then examined. Both approaches can increase the maximum electron density by no more than an order of magnitude. Hence a scheme using two obliquely propagating pulses intersecting at the desired height (e.g. 50 km) is considered. It is shown that the generated electron density at the lowest intersecting position can be enhanced by more than two orders of magnitude.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bollen, W. M., Yee, C. L., Ali, A. W., Nagurney, M. J. & Read, M. E. 1983 J. Appl. Phys. 54, 101.CrossRefGoogle Scholar
Davidson, R.C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Goldstein, B. & Longmire, C. 1984 J. Radiation Effects Res. Engng 3, 1626.Google Scholar
Gurevich, A.V. 1979 Geomagn. Aeronorn. 19, 428.Google Scholar
Gurevich, A. V. 1980 Soviet Phys. Usp 23, 862.CrossRefGoogle Scholar
Kuo, S. P., Run, A. & Schmidt, G. 1994 Phys. Rev. E 49, 3310.Google Scholar
Kuo, S. P. & Zhang, Y. S. 1990 Phys. Fluids B 2, 667.CrossRefGoogle Scholar
Kuo, S. P. & Zhang, Y. S. 1991 Phys. Fluids B 3, 2906.CrossRefGoogle Scholar
Kuo, S. P., Zhang, Y. S. & Kossey, P. 1990 J. Appl. Phys. 67, 2762.CrossRefGoogle Scholar
Kuo, S. P., Zhang, Y. S., Lee, M. C., Kossey, P. & Barker, R. J. 1992 Radio Sci. 27, 851.CrossRefGoogle Scholar
Lupan, Yu. A. 1976 Soviet Phys. Tech. Phys. 21, 1367.Google Scholar
Macdonald, A. D., Gaskell, D. U. & Gittermam, H. N. 1963 Phys. Rev. 5, 1841.CrossRefGoogle Scholar
Yee, C. L., Ali, A. W. & Bollen, W. M. 1983 J. Appl. Phys. 54, 1278.CrossRefGoogle Scholar
Yee, J. H., Alvarez, R. A., Mayhall, D. J., Byrne, D. P. & Degroot, J. 1986 Phys. Fluids 29, 1238.CrossRefGoogle Scholar
Yee, J. H., Alvarez, R. A., Mayhall, D. J., Madsen, N. K. & Cabayan, H. S. 1984 J. Radiation Effects Res. Engng 3, 152.Google Scholar