Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-05T20:27:12.295Z Has data issue: false hasContentIssue false

Nonlinear propagation of lower-hybrid waves in an inhomogeneous plasma

Published online by Cambridge University Press:  13 March 2009

M. Y. Yu
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, D-4630 Bochum, F.R. Germany
P. K. Shukla
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, D-4630 Bochum, F.R. Germany
K. H. Spatschek
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, F.R. Germany

Abstract

We investigate the problem of spatial depletion of propagating lower-hybrid waves in an inhomogeneous plasma. In particular, we consider the nonlinear evolution of a lower-hybrid pump which is coupled to a daughter lower-hybrid decay wave excited by low-frequency density perturbations. Our results show that pump depletion occurs when three-dimensional effects are included. This phenomenon competes with the filamentation of the pump caused by self- interaction. Implications to lower-hybrid heating experiments are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellan, P. & Porkolab, M. 1974 Phys. Fluids, 17, 1592.CrossRefGoogle Scholar
Chen, H. H. & Liu, C. S. 1976 Phys. Rev. Lett. 37, 693.CrossRefGoogle Scholar
Chen, L. & Berger, R. L. 1977 Nucl. Fusion, 17, 779.CrossRefGoogle Scholar
Chu, F. Y. F. & Karney, C. F. F. 1977 Phys. Fluids, 20, 1728.CrossRefGoogle Scholar
Gekelman, W. & Stenzel, R. L. 1975 Phys. Rev. Lett. 35, 1708.CrossRefGoogle Scholar
Gibbons, J., Thornhill, S. G., Wardrop, M. J. & Ter, D. 1977 J. Plasma Phys. 17, 153.CrossRefGoogle Scholar
Karpman, V. I. & Maslov, E. M. 1977 Phys. Lett. A 60, 307.CrossRefGoogle Scholar
Karpman, V. I. & Maslov, E. M. 1978 Soviet Phys. JETP, 46 (in press).Google Scholar
Kaw, P. K. 1976 Princeton PPL Report MATT-1208.Google Scholar
Kaw, P. K., Cheng, C. Z. & Chen, L. 1976 Princeton PPL Report MATT-1305.Google Scholar
Kuehl, H. H. 1976 Phys. Fluids, 19, 1972.CrossRefGoogle Scholar
Manakov, S. V. 1974 Soviet Phys. JETP, 38, 248.Google Scholar
Morales, G. J. & Lee, Y. C. 1975 Phys. Rev. Lett. 35, 930.CrossRefGoogle Scholar
Pereira, N. R. & Stenflo, L. 1977 Phys. Fluids, 20, 1733.CrossRefGoogle Scholar
Sanuki, H. & Ogino, T. 1977 Phys. Fluids, 20, 1510.CrossRefGoogle Scholar
Sen, A., Karney, C. F. F., Johnston, G. L. & Bers, A. 1978 Nucl. Fusion, 18, 171.CrossRefGoogle Scholar
Sen, A., Karney, C. F. F. & Bers, A. 1977 Report MIT, PRR-19.Google Scholar
Simonutti, M. D. 1975 Phys. Fluids, 18, 1524.CrossRefGoogle Scholar
Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 19, 387.CrossRefGoogle Scholar
Spatschek, K. H., Shukla, P. K. & Yu, M. Y. 1977 J. Plasma Phys. 18, 165.CrossRefGoogle Scholar
Spatsohek, K. H., Shukla, P. K. & Yu, M. Y. 1978 Nucl. Fusion, 18, 290.CrossRefGoogle Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Zakharov, V. E. & Shabat, A. B. 1972 Soviet Phys. JETP, 34, 62.Google Scholar