Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T18:12:53.187Z Has data issue: false hasContentIssue false

On the ignition of a self-sustained fusion reaction in a dense DT plasma

Published online by Cambridge University Press:  13 March 2009

M. A. Liberman
Affiliation:
Institute for Physical Problems, Moscow, USSR
A. L. Velikovich
Affiliation:
Institute for Physical Problems, Moscow, USSR

Abstract

Ignition of a self-sustained fusion reaction in a strong magnetic field is studied. The critical ignition dimensions and the threshold ignition energy are calculated as functions of the fuel density and the magnitude of the transverse magnetic field. A new method for producing ultra-high magnetic fields is proposed which provides at once heating of the fuel by induction currents and localization of the micro-explosion by the magnetic field. Simple analytic estimates show that a certain combination of inertial, magnetic and wall methods of plasma confinement may decrease the ignition energy below 100 kJ.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, N., Nishihara, K., Nozaki, K. & Taniuti, T. 1976 J. Phys. Soc. Japan, 41, 1774.CrossRefGoogle Scholar
Avrorin, E. N., Feoktistov, L. P. & Shibarshov, L. I. 1980 Fiz. Plazmy, 6, 965.Google Scholar
Barenblatt, G. I. & Zel'Dovich, Ya. B. 1957 Prikl. Mat. Mekh. 21, 856.Google Scholar
Basov, N. G. & Krokhin, O. N. 1964 Zhurn. Eksp. Teor. Fiz. 46, 171.Google Scholar
Bobin, J. L., Colombant, D. & Tonon, G. F. 1971 Fusion by Laser-Driven Flame Propagation in Solid DT Targets, Preprint.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Dawson, J. M. 1964 Phys. Fluids, 7, 981.CrossRefGoogle Scholar
Decoste, R., Bodner, S. E., Ripin, B. H., McLean, E. A., Obenschain, S. P. & Armstrong, C. M. 1979 Phys. Rev. Lett. 42, 1673.CrossRefGoogle Scholar
Fraley, G. S., Linnebur, E. J., Mason, R. J. & Morse, R. L. 1974 Phys. Fluids, 17, 474.CrossRefGoogle Scholar
Gamalii, E. G., Gus'Kov, S. Yu. & Krokhin, O. N. 1975 Fiz. Plazmy, 1, 904.Google Scholar
Knoepfel, H. 1970 Pulsed High Magnetic Fields. North-Holland.Google Scholar
Liberman, M. A. 1978 Zhurn. Eksp. Teor. Fiz. 75, 1652.Google Scholar
Liberman, M. A. & Velikovich, A. L. 1984 J. Plasma Phys.Google Scholar
Linhart, J. G. 1976 Energy Storage, Compression and Switching (ed. Bostick, W. H., Nardi, V. and Zucker, O. S. F.), p. 369. Plenum.CrossRefGoogle Scholar
Nozaki, K. & Nishihara, K. 1977 J. Phys. Soc. Japan, 43, 1393.CrossRefGoogle Scholar
Nuckolls, T., Wood, L., Thiessen, A. & Zimmerman, G. 1972 Nature, 239, 139.CrossRefGoogle Scholar
Pashinin, P. P. & Prokhorov, A. M. 1971 Zhurn. Eksp. Teor. Fiz. 60, 1630.Google Scholar
Pashinin, P. P. & Prokhorov, A. M. 1972 Zhurn. Eksp. Teor. Fiz. 62, 189.Google Scholar
Prokhorov, A. M., Anisimov, S. I. & Pashinin, P. P. 1976 Usp. Fiz. Nauk, 119, 401.CrossRefGoogle Scholar
Samarskii, A. A. & Zmitrienko, N. V. 1970 Dokl. AN SSSR, 227, 321.Google Scholar
Somon, J. P. 1972 Nucl. Fusion, 12, 461.CrossRefGoogle Scholar
Zmitrienko, N. V., Kurdiumov, S. P., Mikhailov, A. P. & Samarskii, A. A. 1977 Pis'ma v Zhurn. Eksp. Teor. Fiz. 26, 620.Google Scholar