Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-18T13:23:38.006Z Has data issue: false hasContentIssue false

Optimum point of acceleration of an electron inside the collisional plasma-filled elliptical waveguide

Published online by Cambridge University Press:  05 September 2014

M. Hadad*
Affiliation:
Physics Department, University of Kashan, Kashan, Islamic Republic of Iran
M. Torkiha-Esfhani
Affiliation:
Physics Department, University of Kashan, Kashan, Islamic Republic of Iran
*
Email address for correspondence: hadad.m92@gmail.com

Abstract

In this paper, the effect of the electron collision frequency with background ions on TMmr mode field components, the trajectory and the electron energy gain is studied. The field components of the TMmr mode in the elliptical waveguides are calculated. The ohmic heating for three different value of collision frequency calculated and the power losses is obtained. The deflection angle and acceleration gradient of an electron in the fields associated with a transverse magnetic (TM) wave propagating inside a elliptical waveguide for TMmr mode is studied. The relativistic momentum and energy equations for an electron are solved, which was injected initially along the propagation direction of the microwave. The results for TMmr mode are graphically represented. Finally, the optimum point of acceleration for the even mode TM11 is obtained and it is shown that in a cross section of elliptical waveguide optimum point is center of ellipse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdoli-Arani, A., Jazi, B. and Shokri, B. 2012 Acceleration of an electron inside the circular and elliptical waveguides by microwave radiation. IEEE Trans. Plasma Sci. 41 (1), 6269.Google Scholar
Abdoli-Arani, A., Jazi, B. and Shokri, B. 2013 Acceleration and dynamics of an electron in the degenerate and magnetized plasma elliptical waveguide. Phys. Plasmas 20 (2), 023104–1–023104–9.Google Scholar
Aria, A. K. and Malik, H. K. 2008 Wakefield generation in a plasma filled rectangular waveguide. Open Plasma Phys. J. 1 (1), 18.Google Scholar
Aria, A. K. and Malik, H. K. 2009 Numerical studies on wakefield excited by Gaussian-like microwave pulse in a plasma filled waveguide. Opt. Commun. 282 (3), 423426.Google Scholar
Beswell, J. 1996 Plasma Sources Sci. Tech. 54 (54), 260266.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004 A laserplasma accelerator producing monoenergetic electron beams. Nature 431 (7008), 541544.Google Scholar
Fritzler, S., phuoe, K. Ta, Malka, V., Rousse, A. and Lefebvre, E. 2003 Ultrashort electron bunches generated with high-intensity lasers: applications to injectors and x-ray sources. Appl. Phys. Lett. 83 (19), 38883890.Google Scholar
Galkin, A. L., Korobkin, V. V., Romanorsky, M. Y. and Shiryaev, O. B. 2008 Dynamics of an electron driven by relativistically intense laser radiation. Phys. Plasmas 15 (2), 023104–1–023104–7.Google Scholar
Gupta, D. N., Jang, H. J. and Suk, H. 2009 Combined effect of tight-focusing and frequency-chirping on laser acceleration of an electron in vacuum. J. Appl. Phys. 105 (10), 106110.CrossRefGoogle Scholar
Gupta, D. N., Kant, N., Kim, D. E. and Suk, H. 2007 Electron acceleration to GeV energy by a radially polarized laser. Phys. Lett. A 368 (5), 402407.Google Scholar
Gutirrez-Vega, J. C., Rodrguez-Dagnino, R. M., Meneses-Nava, M. A. and Chvez-Cerda, S. 2003 Mathieu functions, a visual approach. Am. J. Phys. 71 (3), 233242.Google Scholar
Hafz, N., Lee, H. J., Kim, G. H., Kim, J. U., Suk, H. and Lee, J. 2003 Femtosecond X-ray generation via the Thomson scattering of a terawatt laser fromelectron bunches produced from the LWFA utilizing a plasma density transition. IEEE Trans. Plasma Sci. 31 (6), 13881394.Google Scholar
Ivanov, S. T. and Alexov, E. G. 1990 Electromagnetic waves in a plasma waveguide. J. Plasma Phys. 43 (6), 5167.Google Scholar
Jawla, S. K., Kumar, S. and Malik, H. K. 2005 Evaluation of mode fields in a magnetized plasma waveguide and electron acceleration. Opt. Commun. 251 (4), 346360.Google Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics, Pure and Applied Physics, Vol. 0-911351. New York: McGraw-Hill.Google Scholar
Kumar, S. and Yoon, M. 2008 Electron dynamics and acceleration study in a magnetized plasma-filled cylindrical waveguide. J. Appl. Phys. 103 (2), 023302, http://dx.doi.org/10.1063/1.2831223.Google Scholar
Malik, H. K. 2008 Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration. Open Plasma Phys. J. 104 (5), 053308–1–053308–7.Google Scholar
Mohamed, B. F. and Gouda, A. M. 2011 Electron acceleration by microwave radiation inside a rectangular waveguide. Plasma Sci. Technol. 13 (3), 357361.CrossRefGoogle Scholar
Pantell, R. H. and Smith, T. I. 1982 Laser-driven electron acceleration by means of two-wave interaction. Appl. Phys. Lett 40 (8), 753754.Google Scholar
Ren, C.et al. 2006 A global simulation for laser-driven MeV electrons in 50-?m-diameter fast ignition targets. Phys. Plasmas 13 (5), 056308–1–056308–7.Google Scholar
Sentoku, Y., Mima, K., Taguchi, T., Miyamoto, S. and Kishimoto, Y. 1998 Particle simulation on x-ray emissions from ultra-intense laser produced plasmas. Phys. Plasmas 5 (12), 43664372.Google Scholar
Shenggang, L., Lee, J. K., Liqun, S., Yang, Y. and Dajun, Z. 1996 Theory of wave propagation along corrugated waveguide filled with plasmas immersed in an axial magnetic field. IEEE Trans. Plasma Sci. 24 (3), 918923.Google Scholar
Shivarova, A. and Tarnev, K. 2001 Effects of plasma-density inhomogeneity and collisions and their relation to maintenance of waveguide discharges by Trivelpiece-Gould modes: I. Resonance absorption. Plasma Sources Sci. Technol. 10 (2), 260266.Google Scholar
Sprangle, P., Esarey, E. and Krall, J. 1996 Laser driven electron acceleration in vacuum, gases, plasmas. Phys. Plasmas 3 (5), 21832190.Google Scholar
Tabak, M., Hammer, J., Ginsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M. & Perry, M. D. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tsushima, A. and Ishihara, O. 2009 Electron acceleration by oscillating electric field. J. Plasma Fusion Res. Ser. 8, 6568.Google Scholar
Umstadter, D. 2003 Relativistic laser plasma interactions. J. Phys. D: Appl. Phys. 36 (8), R151.Google Scholar
Winske, D. and Jackson, E. A. 1975. Phys. Fluids 18 (3), 389, http://dx.doi.org/10.1063/1.861148.Google Scholar