Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T11:28:04.214Z Has data issue: false hasContentIssue false

Production of plasma vortices by lower-hybrid waves

Published online by Cambridge University Press:  13 March 2009

M. Y. Yu
Affiliation:
Institut für Theoretische Phusik, Ruhr-Universität Bochum, 4630 Bochum 1, Federal Republic of Germany
P. K. Shukla
Affiliation:
Institut für Theoretische Phusik, Ruhr-Universität Bochum, 4630 Bochum 1, Federal Republic of Germany
H. U. Rahman
Affiliation:
Institut für Theoretische Phusik, Ruhr-Universität Bochum, 4630 Bochum 1, Federal Republic of Germany

Abstract

Nonlinear excitation of electrostatic and magnetostatic zero-frequency modes by finite-amplitude lower-hybrid waves is considered. It is found that modulational instabilities can give rise to enhanced plasma vortices. Dispersion relations, as well as analytical expressions for the growth rates, are obtained. The enhanced vortices may cause anomalous cross-field diffusion which can affect plasma confinement in tokamak devices when lower-hybrid waves are used for plasma heating or current drive. We found that magnetic fluctuations associated with the parametrically driven magnetostatic mode are of particular importance in tokamak plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brambilla, M. 1976 Nucl. Fusion, 16, 47.CrossRefGoogle Scholar
Chen, L. & Brewer, R. L. 1977 Nucl. Fusion,17, 779.CrossRefGoogle Scholar
Chu, C., Chu, M. S. & Ohkawa, T. 1978 Phys. Rev. Lett. 71, 753.Google Scholar
Fisch, N. J. 1978 Phys. Rev. Lett. 41, 873.CrossRefGoogle Scholar
Gekelman, W. & Stenzel, R. L. 1975 Phys. Rev. Lett. 35, 1708.CrossRefGoogle Scholar
Golant, V. E. 1972 Soviet Phys. Tech. Phys. 16, 1980.Google Scholar
Hassam, A. B. & Kulsrud, R. M. 1979 Phys. Fluids, 22, 2097.CrossRefGoogle Scholar
Lin, A. T., Dawson, J. M. & Okuda, H. 1978 Phys. Rev. Lett. 71, 753.CrossRefGoogle Scholar
Lin, A. T., Dawson, J. M. & Okuda, H. 1980 Phys. Fluids, 23, 1316.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1975 Phys. Rev. Lett. 35, 930.CrossRefGoogle Scholar
Motley, R. W. 1980 Phys. Fluids, 23, 2050.CrossRefGoogle Scholar
Motley, R. W., Hooke, W. M. & Anania, G. 1979 Phys. Rev. Lett. 43, 1799.CrossRefGoogle Scholar
Motley, R. W., Hooke, W. M. & Gwinn, C. R. 1980 Phys. Lett. A 77, 451.CrossRefGoogle Scholar
Okuda, H. & Dawson, J. M. 1973 Phys. Fluids, 16, 408.CrossRefGoogle Scholar
Okuda, H., Lee, W. W. & Lin, A. T. 1979 Phys. Fluids, 22, 1899.CrossRefGoogle Scholar
Porkolab, M. 1978 Nucl. Fusion, 18, 367.CrossRefGoogle Scholar
Porkolab, M., Bernabei, S., Hooke, W. M., Motley, R. W. & Nagashima, T. 1977 Phys. Rev. Lett. 38, 230.CrossRefGoogle Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Wilson, J. R. & Vong, K. L. 1979 Phys. Rev. Lett. 43, 1392.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 20, 189.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. & Spatschek, K. H. 1981 Phys. Lett. A 83, 129.CrossRefGoogle Scholar