Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T10:16:54.252Z Has data issue: false hasContentIssue false

Resonant interaction between laser and electrons undergoing betatron oscillations in the bubble regime

Published online by Cambridge University Press:  24 July 2015

Alessandro Curcio*
Affiliation:
Physics Department of Roma University, ‘La Sapienza’, Rome 00185, Italy Laboratori Nazionali di Frascati (INFN), Frascati 00044, Italy
Danilo Giulietti
Affiliation:
Physics Department of the University and INFN, Pisa 56126, Italy
Giuseppe Dattoli
Affiliation:
ENEA–Centro Ricerche Frascati, Roma, Frascati 00044, Italy
Massimo Ferrario
Affiliation:
Laboratori Nazionali di Frascati (INFN), Frascati 00044, Italy
*
Email address for correspondence: alessandro.curcio@lnf.infn.it

Abstract

The betatron radiation in the bubble regime is studied in the presence of resonant interaction between the accelerated electrons and the driver laser pulse tail. The calculations refer to experimental parameters available at the FLAME laser facility at the National Laboratories of Frascati (LNF), and represent the radiation spectra and spatial distributions to be expected in forthcoming experiments.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cipiccia, S. et al. 2011 Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nature Phys. 7, 867871.Google Scholar
Corde, S., Ta Phuoc, K., Lambert, G., Fitour, R., Malka, V., Rousse, A., Beck, A. & Lefebvre, E. 2013 Femtosecond x rays from laser–plasma accelerators. Rev. Mod. Phys. 85 (January–March), 148.Google Scholar
Decker, C. D., Mori, W. B., Tzeng, K.-C. & Katsouleas, T. 1996 The evolution of ultra-intense, short-pulse lasers in underdense plasmas. Phys. Plasmas 3, 20472056.Google Scholar
Esarey, E., Schroeder, C. B., Shadwick, B. A, Wurtele, J. S. & Leemans, W. P. 2000 Nonlinear theory of nonparaxial laser pulse propagation in plasma channels. Phys. Rev. Lett. 84, 30813084.Google Scholar
Esarey, E. et al. 2002 Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505.Google Scholar
Glinec, Y. et al. 2008 Direct observation of betatron oscillations in a laser–plasma electron accelerator. Europhys. Lett. 81, 64001.Google Scholar
Jackson, J. D. 1999 Classical Electrodynamics. Wiley.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1971 The Classical Theory of Fields. Pergamon.Google Scholar
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura., K, Geddes, C. G. R., Esarey, E., Schroeder, C. B. & Hooker, S. M. 2006 GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696699.Google Scholar
Lu, W., Tzoufras, M. & Joshi, C. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. 10, 061301.Google Scholar
Nemeth, K. et al. 2008 Laser-driven coherent betatron oscillation in a laser–wakefield cavity. Phys. Rev. Lett. 100, 095002.Google Scholar
Pukhov, A. et al. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 28472854.CrossRefGoogle Scholar
Pukhov, A. et al. 2002 Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355361.Google Scholar
Rousse, A. et al. 2004 Production of a keV X-ray beam from synchrotron radiation in relativistic laser–plasma interaction. Phys. Rev. Lett. 93 (13), 135005,1–4.CrossRefGoogle ScholarPubMed
Shaw, J. L. et al. 2014 Role of direct laser acceleration in energy gained by electrons in a laser wakefield accelerator with ionization injection. Plasma Phys. Control. Fusion 56, 084006.CrossRefGoogle Scholar
Sidky, E. Y. et al. 2005 A robust method of x-ray source spectrum estimation from transmission measurements: demonstrated on computer simulated, scatter-free transmission data. J. Appl. Phys. 97, 124701.CrossRefGoogle Scholar
Sun, G.-Z., Ott, E., Lee, Y. C. & Guzdar, P. S. 1987 Self-focusing of short intense pulses in plasmas. Phys. Fluids 30 (2), 526532.CrossRefGoogle Scholar
Vieira, J., Fiuza, F., Silva, L. O., Tzoufras, M. & Mori, W. B. 2010 Onset of self-steepening of intense laser pulses in plasmas. New J. Phys. 12, 045025.CrossRefGoogle Scholar
Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. 2014 All-optical radiation reaction at $10^{21}~\text{W}~\text{cm}^{-2}$ . Phys. Rev. Lett. 113, 134801.Google Scholar
Zhang, X. et al. 2015 Synergistic laser wakefield/direct laser acceleration in the plasma bubble regime. arXiv:1412.7201 [physics.plasm-ph] pp. 1–5; doi:10.1103/PhysRevLett.114.184801.Google Scholar