Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T21:24:29.935Z Has data issue: false hasContentIssue false

Resonant interaction of runaway electrons with magnetic field ripple in tokamak plasmas

Published online by Cambridge University Press:  01 October 2009

Z. Y. CHEN
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, P. R. China (chenzy1003@163.com) Key Laboratory of Advanced Technology and Manufacture for Renewable Energy Material, Ministry of Education, Kunming 650092, P. R. China
B. N. WAN
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
Y. J. SHI
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
H. J. JU
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, P. R. China (chenzy1003@163.com)
J. X. ZHU
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, P. R. China (chenzy1003@163.com)
H. F. LIANG
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, P. R. China (chenzy1003@163.com)

Abstract

The toroidal magnetic field of tokamaks is generated by a finite number of coils, which slightly modulates the magnetic field and runaway electrons experience this modulation. The resonant interaction between runaway electrons and the magnetic field ripple has been observed in the HT-7 tokamak. The maximum energy of runaways in the edge region could be blocked by the resonance of gyromotion with the nth harmonic of the magnetic field ripple. This resonant interaction is favorable for the control of runaway energy.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gill, R. D. and JET Joint Undertaking. 1993 Nucl. Fusion 33, 1613.CrossRefGoogle Scholar
[2]Yoshino, R., Kondoh, T., Neyatani, Y., Itami, K., Kawano, Y. and Isei, N. 1997 Plasma Phys. Control. Fusion 39, 313.CrossRefGoogle Scholar
[3]Riccardo, V. and JET EFDA Contributors. Plasma Phys. Control. Fusion 45, A269.CrossRefGoogle Scholar
[4]Plyusnin, V. V., Riccardo, V., Jaspers, R., Alper, B., Kiptily, V. G., Mlynar, J., Popovichev, S., Luna, E. L., Andersson, F. and JET EFDA Contributors. 2006 Nucl. Fusion 46, 277.CrossRefGoogle Scholar
[5]Gill, R. D. and JET Joint Undertaking. 2000 Nucl. Fusion 40, 163.CrossRefGoogle Scholar
[6]Martín-Solís, J. R., Esposito, B., Sánchez, R., Granucci, G. and Panaccione, L. 2005 Nucl. Fusion 45, 1524.CrossRefGoogle Scholar
[7]Russo, A. J. 1991 Nucl. Fusion 31, 117.CrossRefGoogle Scholar
[8]Martin-Solis, J. R., Esposito, B., Sánchez, R. and Alvarez, J. D. 1999 Phys. Plasmas 6, 238.CrossRefGoogle Scholar
[9]Laurent, L. and Rax, J. M. 1990 Europhys. Lett. 11, 219.CrossRefGoogle Scholar
[10]Kurzan, B., Steuer, K. H. and Fussmann, G. 1995 Phys. Rev. Lett. 75, 4626.CrossRefGoogle Scholar
[11]Chatelier, M., Geraud, A., Joyer, P., Martin, G. and Rax, J. M. 1989 In: 16th EPS Conf. Controlled Fusion and Plasma Physics, Venice, p. 19.Google Scholar
[12]Esposito, B., Martin-Solis, J. R., Poli, F. M., Mier, J. A., Sánchez, R. and Panaccione, L. 1996 Plasma Phys. Control. Fusion 45, 2035.CrossRefGoogle Scholar
[13]Jasper, R. J. 1995 PhD thesis, Technical University Eindhoven.Google Scholar
[14]Chen, Z. Y., Wan, B. N., Lin, S. Y., Shi, Y. J., Hu, L. Q., Gong, X. Z., Lin, H. and Asif, M. 2006 Rev. Sci. Instrum. 77, 013502.CrossRefGoogle Scholar