Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T02:40:57.223Z Has data issue: false hasContentIssue false

Turbulent impurity transport modeling for Alcator C-Mod

Published online by Cambridge University Press:  03 June 2013

X. R. FU
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu)
W. HORTON
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu) Mediterranean Institute of Advanced Research, Aix Marseille Université, Marseille, France
I. O. BESPAMYATNOV
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu)
W. L. ROWAN
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu)
S. BENKADDA
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR7345, Campus St Jérôme Case 321, 13397, Marseille Cedex 20, France
C. L. FIORE
Affiliation:
MIT Plasma Science and Fusion Center, Cambridge, MA 02139, USA
S. FUTATANI
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu)
K. T. LIAO
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA (xrfu@utexas.edu)

Abstract

Turbulent particle transport is investigated with a quasilinear theory that is motivated by the boron impurity transport experiments in the Alcator C-Mod. Eigenvalue problems for sets of reduced fluid equations for multi-component plasmas are solved for the self-consistent fluctuating field vectors composed of the electric potential φ, the main ion density δni, the impurity density δnz and the ion temperature fluctuation δTi. For Alcator C-Mod parameters, we investigate two drift wave models: (1) the density-gradient-driven impurity drift wave and (2) the ion-temperature-gradient-driven ion temperature gradient (ITG) mode. Analytic and numerical results for particle transport coefficients are derived and compared with the transport data and the neoclassical theory. We explore the ability of the model to explain impurity density profiles in three confinement regimes: H-mode, I-mode and internal transport barrier (ITB) regime in C-Mod. Related experiments reported on the Large Helical Device are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angioni, C. and Peeters, A. 2006 Direction of impurity pinch and auxiliary heating in tokamak plasmas. Phys. Rev. Lett. 96 (9), 14.CrossRefGoogle ScholarPubMed
Angioni, C., Peeters, A. G., Pereverzev, G. V., Bottino, A., Candy, J., Dux, R., Fable, E., Hein, T. and Waltz, R. E. 2009 Gyrokinetic simulations of impurity, He ash and α particle transport and consequences on ITER transport modelling. Nucl. Fusion 49 (5), 055013.CrossRefGoogle Scholar
Belli, E. A. and Candy, J. 2008 Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics. Plasma Phys. Control. Fusion 50 (9), 095010.CrossRefGoogle Scholar
Brooks, J. N., Allain, J. P., Doerner, R. P., Hassanein, A., Nygren, R., Rognlien, T. D. and Whyte, D. G. 2009 Plasma–surface interaction issues of an all-metal ITER. Nucl. Fusion 49 (3), 035007.CrossRefGoogle Scholar
Coppi, B. and Zhou, T. 2012 Interpretation of the I-regime and transport associated with relevant heavy particle modes. Phys. Plasmas 19 (1), 012302.CrossRefGoogle Scholar
Dietz, K. J. and the JET Team. 1990 Effect of beryllium on plasma performance in jet. Plasma Phy. Control. Fusion 32 (11), 837.CrossRefGoogle Scholar
Fiore, C. L., Ernst, D. R., Podpaly, Y. A., Mikkelsen, D., Howard, N. T., Lee, J., Reinke, M. L., Rice, J. E., Hughes, J. W., Ma, Y.et al. 2012 Production of internal transport barriers via self-generated mean flows in Alcator C-Mod. Phys. Plasmas 19 (5), 056113.CrossRefGoogle Scholar
Futatani, S., Horton, W., Benkadda, S., Bespamyatnov, I. O. and Rowan, W. L. 2010 Fluid models of impurity transport via drift wave turbulence. Phys. Plasmas 17 (7), 072512.CrossRefGoogle Scholar
Helander, P. and Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge, UK: Cambridge University Press.Google Scholar
Horton, W. Jr. 1976 Drift wave stability of inverted gradient profiles in tokamaks. Phys. Fluids 19, 711718.CrossRefGoogle Scholar
Horton, C. W. and Ichikawa, Y. H. 1996 Chaos and Structures in Nonlinear Plasmas. Singapore: World Scientific.CrossRefGoogle Scholar
Horton, W., Su, X. N. and Morrison, P. J. 1990 Drift wave vortices and turbulent transport. Sov. J. Plasma Phys. 16 (8), 562.Google Scholar
Houlberg, W. A., Shaing, K. C., Hirshman, S. P. and Zarnstorff, M. C. 1997 Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio. Phys. Plasmas 4, 32303242.CrossRefGoogle Scholar
Hubbard, A. E., Whyte, D. G., Churchill, R. M., Cziegler, I., Dominguez, A., Golfinopoulos, T., Hughes, J. W., Rice, J. E., Bespamyatnov, I., Greenwald, M. J.et al. 2011 Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Mod. Phys. Plasmas 18 (5), 056115.CrossRefGoogle Scholar
Hughes, J. W., Mossessian, D., Zhurovich, K., Demaria, M., Jensen, K. and Hubbard, A. 2003 Thomson Scattering Upgrades On Alcator C-Mod. Rev. Sci. Instrum. 74, 16671670.CrossRefGoogle Scholar
Maddison, G. P., Brix, M., Budny, R., Charlet, M., Coffey, I., Cordey, J. G., Dumortier, P., Erents, S. K., Hawkes, N. C., von Hellermann, M.et al. 2003 Impurity-seeded plasma experiments on jet. Nucl. Fusion 43 (1), 49.CrossRefGoogle Scholar
Rowan, W. L., Bespamyatnov, I. O. and Fiore, C. L. 2008a Light impurity transport at an internal transport barrier in Alcator C-Mod. Nucl. Fusion 48 (10), 105005.CrossRefGoogle Scholar
Rowan, W. L., Bespamyatnov, I. O. and Granetz, R. S. 2008b Wide-view charge exchange recombination spectroscopy diagnostic for Alcator C-Mod. Rev. Sci. Instrum. 79 (10), 10F529.CrossRefGoogle ScholarPubMed
Sugama, H., Watanabe, T.-H. and Horton, W. 2007 Collisionless kinetic-fluid model of zonal flows in toroidal plasmas. Phys. Plasmas 14 (2), 022502.CrossRefGoogle Scholar
Yoshinuma, M., Ida, K., Yokoyama, M., Osakabe, M., Nagaoka, K., Morita, S., Goto, M., Tamura, N., Suzuki, C., Yoshimura, S.et al. 2009 Observation of an impurity hole in the large helical device. Nucl. Fusion 49 (6), 062002.CrossRefGoogle Scholar