Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-10T10:18:52.430Z Has data issue: false hasContentIssue false

Phase shifts of magneto-acoustic solitons in spin-1/2 fermionic quantum plasma during head-on collision

Published online by Cambridge University Press:  26 November 2012

PRASANTA CHATTERJEE
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan 731235, West Bengal, India
RAJKUMAR ROYCHOUDHURY
Affiliation:
Physics and Applied Mathematics, ISI, Kolkata 700009, West Bengal, India
MALAY KUMAR GHORUI
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan 731235, West Bengal, India Department of Mathematics, B. B. College, Asansol 713303, West Bengal, India (malaykr_ghorui@rediffmail.com)

Abstract

The head-on collision between two magneto-acoustic solitons in spin-1/2 fermionic quantum plasma is studied in the framework of the model proposed by Marklund et al. (Marklund, M., Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. E. 76, 067401). The extended Poincare–Lighthill–Kuo method is used to obtain the phase shifts and the trajectories during the head-on collision of two solitons. The effect of the Zeeman energy for different speeds of the waves, the effect of the total mass density of the charged plasma particles for different strengths of magnetic field, the effect of the speed of the wave for different values of the Zeeman energy, and that of the ratio of the sound speed to Alfven speed for different values of Zeeman energ on the phase shift are studied. It is observed that the phase shifts are significantly affected in all the cases. The most interesting observation of this paper is that the phase shifts increase as well as decrease, and also they may be positive as well as negative depending upon the domain of the chosen parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2010 Phys. Plasmas 17, 072101.CrossRefGoogle Scholar
Asenjo, F. A., Zamanian, J., Marklund, M., Brodin, G. and Johansson, P. 2012 New J. Phys. 14, 073042.CrossRefGoogle Scholar
Atwater, H. A. 2007 Sci. Am. 296, 56.CrossRefGoogle Scholar
Barnes, W. L., Dereux, A. and Ebbesen, T. W. 2003 Nature (London) 424, 824.CrossRefGoogle Scholar
Beskin, V. S., Gurevich, V. and Istomin, Y. N. 1993 Physics of the Pulsar Magnetosphere. Cambridge, UK: Cambridge University Press.Google Scholar
Brodin, G. and Marklund, M. 2007 New J. Phys. 9, 277.CrossRefGoogle Scholar
Chatterjee, P., Ghorui, M. K. and Wong, C. S. 2011 Phys. Plasmas, 18, 103710.CrossRefGoogle Scholar
Chatterjee, P. and Ghosh, U. N. 2011 Eur. Phys. J. D 64, 413417.Google Scholar
Chatterjee, P., Ghosh, U. N., Roy, K., Muniandy, S. V., Wong, C. S. and Sahu, B. 2010 Phys. Plasmas 17, 122314.CrossRefGoogle Scholar
Chatterjee, P., Roy, K., Muniandy, S. V. and Wong, C. S. 2009 Phys. Plasmas 16, 112106.CrossRefGoogle Scholar
El-Labany, S. K., El-Shamy, E. F., El-Taibany, W. F. and Shukla, P. K. 2010 Phys. Lett. A 374, 960964.CrossRefGoogle Scholar
El-Shamy, E. F., Moslem, W. M. and Shukla, P. K. 2009 Phys. Lett. A 374, 290293.CrossRefGoogle Scholar
El-Shamy, E. F., Sabry, R., Moslem, W. M. and Shukla, P. K. 2010 Phys. Plasmas 17, 082311.CrossRefGoogle Scholar
Fortney, J. J., Glenzer, S. H., Koenig, M., Militzer, B., Saumon, D. and Valencia, D. 2009 Phys. Plasmas 16, 041003.CrossRefGoogle Scholar
Garcia, L. G., Haas, F., de-Oliveira, L. P. and Goedert, J. 2005 Phys. Plasmas 12, 012302.CrossRefGoogle Scholar
Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
Glenzer, S. H., Landen, O. L. and Neumayer, P. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
Haas, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Phys. Plasmas 10, 3858.CrossRefGoogle Scholar
Haas, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 62, 2763.CrossRefGoogle Scholar
Han, J. N., Yang, X. X., Tian, D. X. and Duan, W. S. 2008 Phys. Lett. A. 372, 48174821.CrossRefGoogle Scholar
Harding, A. K. and Lai, D. 2006 Phys. Rep. 69, 2631.CrossRefGoogle Scholar
Jaffery, A. and Kawahawa, T. 1982 Asymptotic Methods in Nonlinear Wave Theory. London: Pitman.Google Scholar
Jung, Y. D. 2001 Phys. Plasmas 8, 3842.CrossRefGoogle Scholar
Killian, T. C. 2006 Nature (London) 441, 297.CrossRefGoogle Scholar
Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
Marklund, M., Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. E. 76, 067401.CrossRefGoogle Scholar
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Markowich, P. A., Ringhofer, C. A. and Schmeiser, C. 1990 Semiconductor Equations. Vienna, Austria: Springer.CrossRefGoogle Scholar
Masood, W., Karim, S., Shah, H. A. and Siddiq, M. 2009 Phys. Plasmas 16, 042108.CrossRefGoogle Scholar
Misra, A. P. and Bhowmik, C. 2007 Phys. Lett. A 369, 9097.CrossRefGoogle Scholar
Misra, A. P. and Ghosh, N. K. 2008 Phys. Lett. A 372, 64126415.CrossRefGoogle Scholar
Moslem, W. M., Ali, S., Shukla, P. K., Tang, X. Y. and Rowlands, G. 2007 Phys. Plasmas 14, 082308.CrossRefGoogle Scholar
Mushtaq, A. and Vladimirov, S. V. 2011 Eur. Phys. J. D 64, 419.Google Scholar
Ning, H. J., Hua, L. J., Hua, S. G., Lai, L. Z. and Yi, L. S. 2011 Chin. Phys. B 20 (2), 025202.Google Scholar
Oraevsky, V. N. and Semikoz, V. B. 2003 Phys. At. Nucl. 66, 466.CrossRefGoogle Scholar
Roy, K. and Chatterjee, P. 2011 Indian J. Phys. 85 (11), 16531665.CrossRefGoogle Scholar
Roy, K., Misra, A. P. and Chatterjee, P. 2008 Phys. Plasmas 15, 032310.CrossRefGoogle Scholar
Su, C. H. and Mirie, R. M. 1980 J. Fluid Mech. 98, 509.CrossRefGoogle Scholar
Van-Dype, M. D. 1975 Perturbation Methods in Fluid Mechanics. California: Parabolic Press.Google Scholar
Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von-Molnar, S., Roukes, M. L., Chtchelkanova, A. Y. and Treger, D. M. 2001 Science 294, 1488.CrossRefGoogle Scholar
Xu, Y. X., Liu, Z. M., Lin, M. M. and Shi, J. R. 2011 Chen, Phys. Plasmas 18, 052301.CrossRefGoogle Scholar
Zabusky, N. J. and Kruskal, M. D. 1995 Phys. Rev. Lett. 15, 240.CrossRefGoogle Scholar