Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T10:20:47.072Z Has data issue: false hasContentIssue false

Simulation study of collisional effects on the propagation of a hot electron beam and generation of Langmuir turbulence for application in type III radio bursts

Published online by Cambridge University Press:  09 October 2012

H. KHALILPOUR
Affiliation:
Physics Department, Payame Noor University, 19395-4697 Tehran, Iran (h_khalilpour@pnu.ac.ir)
G. FOROUTAN
Affiliation:
Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz, Iran

Abstract

The propagation of a localized beam (cloud) of hot electrons and generation of Langmuir waves are investigated using numerical simulation of the quasi-linear equations in the presence of collisional effects for electrons and beam-driven Langmuir waves. It is found that inclusion of the collisional damping of Langmuir waves has remarkable effects on the evolution of the electron distribution function and the spectral density of Langmuir waves, while the effect of collision term for electrons is almost negligible. It is also found that in the presence of collisional damping of Langmuir waves, the relaxation of the beam distribution function in velocity space is retarded and the Langmuir waves are strongly suppressed. The average propagation velocity of the beam is not constant and is larger when collisional damping of Langmuir waves is considered. The collisional damping for electrons does not affect the upper boundary of the plateau but the collisional damping of Langmuir waves pushes it towards small velocities. It is also found that the local velocity of the beam and its width decrease when the collisional damping of Langmuir waves is included.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschwanden, M. J. 2002 Particle acceleration and kinematics in solar flares. Space Sci. Rev. 101, 1227.CrossRefGoogle Scholar
Aschwanden, M. J. 2005 Physics of the Solar Corona: An Introduction with Problems and Solutions. New York: Springer, pp. 651657.Google Scholar
Drummond, W. E. and Pines, D. 1962 Nonlinear stability of plasma oscillations. Nucl. Fusion, Suppl. 3, 10491057.Google Scholar
Emsile, A. G. and Smith, D. F. 1984 Microwave signature of thick-target electron beam in solar flares. Astrophys. J. 279, 882895.CrossRefGoogle Scholar
Foroutan, G. R., Khalilpour, H., Moslehi-Fard, M., Li, B. and Robinson, P. A. 2008 Quasilinear dynamics of a cloud of hot electrons propagating through a plasma with decreasing density and temperature. Phys. Plasmas 15, 122904 (110).CrossRefGoogle Scholar
Foroutan, G. R., Li, B., Robinson, P. A., Cairns, I. H. and Moslehi-Fard, M. 2005 Propagation of a cloud of hot electrons in the regime of fast relaxation. Phys. Plasmas 12, 42905 (112).CrossRefGoogle Scholar
Foroutan, G. R., Li, B., Robinson, P. A., Zahed, H. and Cairns, I. H. 2007a Quasilinear dynamics of a cloud of hot electrons propagating through a plasma in the presence of an externally applied uniform electric field. Phys. Plasmas 14, 122902 (111).Google Scholar
Foroutan, G. R., Robinson, P. A., Sobhanian, S., Moslehi-Fard, M., Li, B. and Cairns, I. H. 2007b Propagation of a cloud of hot electrons through a plasma in the presence of Langmuir scattering by ambient density fluctuations. Phys. Plasmas 14, 012903 (116).CrossRefGoogle Scholar
Grognard, R. J.-M. 1976 Deficiencies of the asymptotic solutions commonly found in the quasilinear relaxation theory. Aust. J. Phys 28, 731753.CrossRefGoogle Scholar
Hamilton, R. J. and Petrosian, V. 1987 Generation of plasma waves by thick-target electron beams, and the expected radiation signature. Astrophys. J. 321, 721734.CrossRefGoogle Scholar
Hannah, I. G. and Kontar, E. P. 2011 The spectral difference between solar flare HXR coronal and footpoint sources due to wave–particle interactions. Astron. Astrophys. 529, A109.CrossRefGoogle Scholar
Hannah, I. G., Kontar, E. P. and Sirenko, O. K. 2009 The effect of wave–particle interactions on low energy cutoffs in solar flare electron spectra. Astrophys. J. Lett 707, 4550.CrossRefGoogle Scholar
Khalilpour, H. and Foroutan, G. 2011 Beam propagation and Langmuir wave generation in a plasma with κ distribution function. Astrophys. Space Sci. 338, 4955.CrossRefGoogle Scholar
Khalilpour, H., Foroutan, G., Moslehi-Fard, M., Li, B. and Robinson, P. A. 2009 Dynamics of a beam of hot electrons propagating through a plasma in the presence of nonthermal electrons. Phys. Plasma 16, 072901 (19).CrossRefGoogle Scholar
Kontar, E. P., Ratcliffe, H. and Bian, N. H. 2012 Wave–particle interactions in non-uniform plasma and the interpretation of hard x-ray spectra in solar flares. Astron. Astrophys. 539, A43.CrossRefGoogle Scholar
Kontar, E. P. and Reid, H. A. S. 2009 Onsets and spectra of impulsive solar energetic electron events observed near the earth. Astrophys. J. 695, L140144.CrossRefGoogle Scholar
Krucker, S., Kontar, E. P., Christe, S. and Lin, R. P. 2007 Solar flare electron spectra at the sun and near the earth. Astrophys. J. 663, L109112.CrossRefGoogle Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2002 Multiple electron beam propagation and Langmuir wave generation in plasmas. Phys. Plasmas 9, 2976 (112).CrossRefGoogle Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2008a Simulations of coronal type III solar radio bursts: 1. Simulation model. J. Geophys. Res. 113, doi:10.1029/2007JA012957.Google Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2008b Simulations of coronal type III solar radio bursts: 2. Dynamic spectrum for typical parameters. J. Geophys. Res. 113, doi:10.1029/2007JA012958.Google Scholar
Lin, R. P. 1985 Energetic solar electrons in the interplanetary medium. Sol. Phys 100, 537561.CrossRefGoogle Scholar
Magelssen, G. R. and Smith, D. F. 1977 Nonrelativistic electron stream propagation in the solar atmosphere and type III radio bursts. Sol. Phys. 55, 211240.CrossRefGoogle Scholar
McClements, K. G. 1987 The quasilinear relaxation and bremsstrahlung of thick target electron beam in solar flares. Astron. Astrophys. 175, 255262.Google Scholar
Melnik, V., Lapshin, V. and Kontar, E. 1999 Propagation of a monoenergetic electron beam in the solar corona. Sol. Phys. 175, 353362.CrossRefGoogle Scholar
Reid, H. A. S., Vilmer, N. and Kontar, E. P. 2011 Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations. Astron. Astrophys. 529, A66.CrossRefGoogle Scholar
Robinson, P. A. and Cairns, I. H. 1988a Fundamental and harmonic emission in type III solar radio bursts: I. Emission at a single location or frequency. Solar Phys. 181, 363394.CrossRefGoogle Scholar
Robinson, P. A. and Cairns, I. H. 1988b Fundamental and harmonic emission in type III solar radio bursts: II. Dominant modes and dynamic spectra. Solar Phys. 181, 395428.CrossRefGoogle Scholar
Ryutov, D. D. and Sagdeev, R. Z. 1970 Quasi-gasdynamical description of a hot electron cloud in a cold plasma. Sov. Phys. JETP 31, 396399.Google Scholar
Sturrock, P. A. 1965 Scattering of electrostatic waves by inhomogeneities in a plasma. Phys. Fluids 8, 281286.CrossRefGoogle Scholar
Takakura, T. and Shibahashi, H. 1975 Dynamics of a cloud of fast electrons travelling through the plasma. Sol. Phys. 46, 323346.CrossRefGoogle Scholar
Vasquez, A. M. and Gomez, D. O. 1997 Beam-generated plasma turbulence during solar flares. Astrophys. J. 483, 463471.CrossRefGoogle Scholar
Vasquez, A. M., Gomez, D. O. and Fontan, C. F. 2002 Second harmonic emission during solar flares. Astrophys. J. 564, 10351041.CrossRefGoogle Scholar
Vedenov, A. A., Velikhov, E. P. and Sagdeev, R. Z. 1962 Quasi-linear theory of plasma oscillations. Nucl. Fusion, Suppl. 2, 465475.Google Scholar
Zheleznyakov, V. V. and Zaitsev, V.V. 1970 Contribution to the theory of type III solar radio bursts. I. Sov. Astron. 14, 47734.Google Scholar