Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T10:02:06.588Z Has data issue: false hasContentIssue false

Study of the pellet ablation cloud using the tomography technique for two-directional simultaneous photography in GAMMA 10/PDX

Published online by Cambridge University Press:  05 April 2024

M. Yoshikawa*
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
Y. Nakashima
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
J. Kohagura
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
Y. Shima
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
S. Kobayashi
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji 611-0011, Japan
R. Minami
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
N. Ezumi
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
M. Sakamoto
Affiliation:
Plasma Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
*
Email address for correspondence: yosikawa@prc.tsukuba.ac.jp

Abstract

The pellet ablation mechanism is an interesting subject for plasma fuelling in fusion plasmas. In GAMMA 10/PDX, pellet injection experiments for higher density plasma production are planned to conduct detached plasma experiments in the higher density plasma condition. We measured the pellet ablation cloud by using the two-directional simultaneous photography system in GAMMA 10/PDX. The tomography reconstruction technique was used for considering the pellet trajectory in the plasma and pellet ablation. The three-dimensional pellet trajectory and pellet ablation images in the plasma were clearly obtained for the first time, to the best of our knowledge.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldzuhn, J., et al. 2019 Pellet fueling experiments in Wendelstein 7-X. Plasma Phys. Control. Fusion 61, 095012.CrossRefGoogle Scholar
Baylor, L.R., Meitner, S.J., Gebhart, T.E., Caughman, J.B.O., Shiraki, D., Wilson, J.R., Craven, D., Fortune, M., Silburn, S., Muir, A., Peacock, A.T., Park, S.H., Kim, K.P., Kim, J.H., Lee, K.S., Ellwood, G., Jachmich, S., Kruezi, U., Lehnen, M. & JET Contributors 2021 Design and performance of shattered pellet injection systems for JET and KSTAR disruption mitigation research in support of ITER. Nucl. Fusion 61, 106001.CrossRefGoogle Scholar
Combs, S.K., Milora, S.L., Baylor, L.R., Foust, C.R., Gethers, F.E. & Sparks, D.O. 1985 A three-barrel repeating pneumatic pellet injector for plasma fueling of the Joint European Torus. Rev. Sci. Instrum. 56, 1173.CrossRefGoogle Scholar
Guan, H. & Gordon, R. 1996 Computed tomography using algebraic reconstruction techniques (ARTs) with different projection access schemes: a comparison study under practical situations. Phys. Med. Biol. 41, 1727.CrossRefGoogle ScholarPubMed
Islam, M.M., Nakashima, Y., Kobayashi, S., Nishino, N., Nakano, Y., Hosoi, K., Ichimura, K., Islam, M.S., Shimizu, K., Fukui, K., Ohuchi, M., Terakado, A., Yoshikawa, M., Kohagura, J., Hirata, M., Ikezoe, R., Wang, X., Ichimura, M., Sakamoto, M. & Imai, T. 2016 Effect of laval nozzle in the GAMMA 10 SMBI experiments. Plasma Fusion Res. 11, 2402053.CrossRefGoogle Scholar
Kawamori, E., Tamano, T., Nakashima, Y., Yoshikawa, M., Kobayashi, S., Cho, T., Ishii, K., Mase, A. & Yatsu, K. 2000 Preliminary pellet injection experiment in the GAMMA 10 tandem mirror. Plasma Fusion Res. Ser. 3, 473.Google Scholar
Kubota, Y., Yoshikawa, M., Nakashima, Y., Kobayashi, T., Higashizono, Y., Matama, K., Noto, M. & Cho, T. 2007 Behavior of hydrogen fueled by pellet injection in the GAMMA 10 tandem mirror. Plasma Fusion Res. 2, S1057.CrossRefGoogle Scholar
Nakashima, Y., et al. 2015 Progress of divertor simulation research toward the realization of detached plasma using a large tandem mirror device. J. Nucl. Mater. 463, 537.CrossRefGoogle Scholar
Sakamoto, R., Yamada, H., Tanaka, K., Tokuzawa, T., Murakami, S., Goto, M., Morita, S., Ohyabu, N., Kawahata, K., Motojima, O. & Experimental group, L.H.D. 2004 Observation of pellet ablation behaviour on the large helical device. Nucl. Fusion 44, 624.CrossRefGoogle Scholar
Yoshikawa, M., et al. 2021 Study of detached plasma profile in the divertor simulation experimental module of tandem mirror GAMMA 10/PDX. AIP Adv. 11, 125231.CrossRefGoogle Scholar
Yoshikawa, M., Kohagura, J., Chikatsu, M., Shima, Y., Sakamoto, M., Nakashima, Y., Minami, R., Yamada, I., Yasuhara, R., Funaba, H., Minami, T. & Kenmochi, N. 2018 Radial profile measurements of electron temperature and density using the thomson scattering system in GAMMA 10/PDX. Plasma Fusion Res. 13, 3402051.CrossRefGoogle Scholar
Yoshikawa, M., Nakashima, Y., Kohagura, J., Shima, Y., Nakanishi, H., Takeda, Y., Kobayashi, S., Minami, R., Ezumi, N. & Sakamoto, M. 2022 First observation of pellet ablation clouds using two-directional simultaneous photography in GAMMA 10/PDX. Plasma Fusion Res. 17, 1202093.CrossRefGoogle Scholar
Zhang, S., Zhang, D., Gong, H., Ghasemlizadeh, O., Wang, G. & Cao, G. 2014 Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique. Opt. Engng 53, 113101.CrossRefGoogle Scholar