Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T19:58:27.421Z Has data issue: false hasContentIssue false

Turbulence acceleration by strong Langmuir plasmons in a laser-plasma

Published online by Cambridge University Press:  01 October 2007

XIAO-SONG YANG
Affiliation:
Department of Physics, Nanchang University, Jianxi 330047, People's Republic of China (yxs0000001@yahoo.com.cn, sqliu@ncu.edu.cn)
SAN-QIU LIU
Affiliation:
Department of Physics, Nanchang University, Jianxi 330047, People's Republic of China (yxs0000001@yahoo.com.cn, sqliu@ncu.edu.cn)

Abstract

The turbulence acceleration of ultra-relativistic electrons by strong Langmuir plasmons is analytically studied in a laser-plasma. Based on the Fokker–Planck equation in the frame of strong turbulence, the exponential form of the spectra of hot electrons is obtained theoretically, which is consistent with the experimental result near the critical surface in a laser-plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Nakajima, K. 2000 Phys. Res. A 455, 140.Google Scholar
[2]Santala, M. I. K. et al. 2001 Phys. Rev. Lett. 86, 1227.CrossRefGoogle Scholar
[3]Gahn, C. et al. 2002 Phys. Plasmas 9, 987.CrossRefGoogle Scholar
[4]Malka, V. et al. 2002. Science 298, 1596.CrossRefGoogle Scholar
[5]Gordon, D. et al. 1998 Phys. Rev. Lett 80, 2133.CrossRefGoogle Scholar
[6]Chen, S.-Y. et al. . 1999 Phys. Plasmas 6, 4739.CrossRefGoogle Scholar
[7]Malka, G. et al. 1997 Phys. Rev. Lett 79, 2053.CrossRefGoogle Scholar
[8]Malka, V. et al. 2001 Phys. Plasmas 8, 2605.CrossRefGoogle Scholar
[9]Gahn, C. et al. 1999 Phys. Rev. Lett 83, 4772.CrossRefGoogle Scholar
[10]Pukhov, A. et al. 1999 Phys. Plasmas 6, 2847.CrossRefGoogle Scholar
[11]Chen, F. F. 1991 Handbook of Plasma Physics, Vol. 3 (ed. Rosenbluth, M. N., Sagdeev, R. Z., Rubenchik, A. M. and Witkowski, S.). Amsterdam: North-Holland, p. 483.Google Scholar
[12]Umstadter, D. 2003 J. Phys. D: Appl. Phys. 36, R151.CrossRefGoogle Scholar
[13]Rubenchik, A. M. and Zakharov, V. E. 1991 Handbook of Plasma Physics, Vol. 3 (ed. Rosenbluth, M. N., Sagdeev, R. Z., Rubenchik, A. M. and Witkowski, S.). Amsterdam: North-Holland, p. 335.Google Scholar
[14]Robinson, P. A. 1997 Rev. Mod. Phys. 69, 507.CrossRefGoogle Scholar
[15]Li, X. Q. and Zhang, H. 2002 Chinese Phys. Lett. 19, 283.Google Scholar
[16]Li, X.-Q. 1987 Physics of Turbulent Plasma. Beijing: Beijing Normal University Press, pp. 138157 (in Chinese).Google Scholar
[17]Tsytovich, V. N. 1971 Nonlinear Effects in Plasma. New York: Plenum, p. 147.Google Scholar
[18]Melrose, D. B. 1986 Instabilities in Space and Laboratory Plasmas. Cambridge: Cambridge University Press, p. 86.CrossRefGoogle Scholar
[19]Tsytovich, V. N. 1977 Theory of Turbulent Plasma. New York: Consultants Bureau, p. 291.CrossRefGoogle Scholar
[20]Galeev, A. A. et al. 1975 Sov. J. Plasma 1, 5.Google Scholar
[21]Pelletier, G. 1982 Phys. Rev. Lett. 49, 782.CrossRefGoogle Scholar
[22]Rubenchik, A. M. and Zakharov, V. E. 1991 Handbook of Plasma Physics, Vol. 3 (ed. Rosenbluth, M. N., Sagdeev, R. Z., Rubenchik, A. M. and Witkowski, S.). Amsterdam: North-Holland, pp. 343359.Google Scholar
[23]Li, X.-Q. 2004 Collapsing Dynamics of Plasmons. Beijing: China Science and Technique Press, pp. 228234 (in Chinese).Google Scholar
[24]Thornhill, S. G. and ter Haar, D. 1978 Phys. Rep. C. 43, 43.CrossRefGoogle Scholar
[25]Liu, S. Q. and Li, X. Q. 2001 J. Plasma Phys. 66, 223.CrossRefGoogle Scholar
[26]Young, P. E. et al. 1989 Phys. Rev. Lett. 63, 2812; 1995 Phys. Plasma 2, 2825; 1995 Phys. Rev. Lett. 75, 1082.CrossRefGoogle Scholar
[27]Aleksandrov, et al. 1984 Laser Part. Beams 2, 213.CrossRefGoogle Scholar