Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T23:20:40.177Z Has data issue: false hasContentIssue false

Experimental determination of breast skin dose using volumetric modulated arc therapy and field-in-field treatment techniques

Published online by Cambridge University Press:  03 October 2022

Ana María Cardona-Maya
Affiliation:
Instituto Zunino, Córdoba, Argentina
José Alejandro Rojas-López*
Affiliation:
Instituto Zunino, Córdoba, Argentina Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina
Alejandro Germanier
Affiliation:
Unidad Estudios Físicos, CEPROCOR, Ministerio de Ciencia y Tecnología, Córdoba, Argentina
Patricia Murina
Affiliation:
Instituto Zunino, Córdoba, Argentina
Daniel Venencia
Affiliation:
Instituto Zunino, Córdoba, Argentina
*
Author for correspondence: José Alejandro Rojas-López, Instituto Zunino, 423 Bispo Oro, Córdoba 5000, Argentina. E-mail: alexrojas@ciencias.unam.mx

Abstract

Introduction:

The use of volumetric modulated arc therapy (VMAT) on the breast has several dosimetric advantages but its impact on skin dose should be evaluated and compared to well-established treatment techniques using tangential fields. The aim of this work is to contrast the skin dose for VMAT and field-in-field (FIF) and to estimate the magnitude of the skin dose involved.

Method:

The skin dose was measured, without build-up, using thermoluminescent dosimeter (TLD) and optically stimulated luminescence dosimeter (OSLD) in breast radiotherapy by an in-house anthropomorphic phantom. Two different treatment techniques were used: FIF and VMAT, based on the planning strategy proposed by Nicolini et al. The dose levels were 4300 cGy, 4600 cGy and 5600 cGy in 20 fractions. In vivo dosimetry with TLD for VMAT was performed for different breast sizes in the same locations as phantom measurements.

Results:

The ipsilateral phantom breast skin dose using both treatment techniques was equivalent. TLD measured doses by the VMAT technique were up to 5% higher than OSLD, although they agree if we consider the geometry uncertainty of the TLD. In accordance with in vivo dosimetry, the mean dose of the ipsilateral breast skin was 62 ± 6% (51%, 75%) relative to the prescribed dose, regardless of the breast size for the volumes considered with this small population (n = 9) as shown by Mann–Whitney U-test (Z = 1·9, 95% confidence). The uncertainty expected in this region due to geometry (volume) changes is up to 9% higher for volumes from 225·9 cc to 968·8 cc. According to the treatment techniques and in vivo dosimetry, the contralateral breast skin dose was 1·0% in FIF and 2·5% in VMAT concerning the prescribed dose.

Conclusion:

There is no difference in skin dosimetry between VMAT and FIF techniques on the ipsilateral breast. It provides useful support for the use of VMAT as a planning technique for breast irradiation. The work describes the importance of quantifying potential differences in skin dosimetry.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dias, A G, Pinto, D F S, Borges, M F et al. Optimization of skin dose using in-vivo MOSFET dose measurements in bolus/non-bolus fraction ratio: a VMAT and a 3DCRT study. J Appl Clin Med Phys 2019; 20 (2): 6370.CrossRefGoogle Scholar
Huang, C J, Hou, M F, Luo, K H et al. RTOG, CTCAE and WHO criteria for acute radiation dermatitis correlate with cutaneous blood flow measurements. Breast 2015; 24 (3): 230236.CrossRefGoogle ScholarPubMed
Hymes, S R, Strom, E A, Fife, C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol 2006; 54: 2846.CrossRefGoogle ScholarPubMed
Wei, J, Meng, L, Hou, X et al. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res 2019; 11: 167177.CrossRefGoogle ScholarPubMed
Gutkin, P M, Fernandez-Pol, S, Horst, K C. Erythema of the skin after breast radiotherapy: it is not always recurrence. Int Wound J 2020; 17 (4): 910915.CrossRefGoogle Scholar
Alashrah, S, Kandaiya, S, Maalej, N, El-Taher, A. Skin dose measurements using radiochromic films, TLDs and ionisation chamber and comparison with Monte Carlo simulation. Radiat Prot Dosimetry 2014; 162 (3): 338344.CrossRefGoogle ScholarPubMed
Kry, S F, Smith, S A, Weathers, R, Stovall, M. Skin dose during radiotherapy: a summary and general estimation technique. J Appl Clin Med Phys 2012; 13 (3): 2034.CrossRefGoogle ScholarPubMed
Kim, S, Liu, C R, Zhu, T C, Palta, J R. Photon beam skin dose analyses for different clinical setups. Med Phys 1998; 25 (6): 860866.CrossRefGoogle ScholarPubMed
Devic, S, Seuntjens, J, Abdel-Rahman, W et al. Accurate skin dose measurements using radiochromic film in clinical applications. Med Phys 2006; 33 (4): 11161124.CrossRefGoogle ScholarPubMed
Wong, G, Lam, E, Bosnic, S et al. Quantitative effect of bolus on skin dose in postmastectomy radiation therapy. J Med Imaging Radiat Sci 2020; 51 (3): 462469.CrossRefGoogle ScholarPubMed
Toledano, A, Garaud, P, Serin, D et al. Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys 2006; 65 (2): 324332.CrossRefGoogle ScholarPubMed
Rojas, J A. Dosimetría in vivo con el Uso de OSL nanoDot en Radioterapia con Intensidad Modulada. Universidad Nacional de Cuyo, Argentina: Comisión Nacional de Energía Atómica, 2019: 12–33.Google Scholar
Kestin, L L, Sharpe, M B, Frazier, R C et al. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 2000; 48 (5): 15591568.CrossRefGoogle ScholarPubMed
Johansen, S, Cozzi, L, Olsen, D R. A planning comparison of dose patterns in organs at risk and predicted risk for radiation induced malignancy in the contralateral breast following radiation therapy of primary breast using conventional, IMRT and volumetric modulated arc treatment techniques. Acta Oncol 2009; 48 (4): 495503.CrossRefGoogle ScholarPubMed
Boman, E, Rossi, M, Haltamo, M, Skyttä, T, Kapanen, M. A new split arc VMAT technique for lymph node positive breast cancer. Physica Med 2016; 32 (11): 14281436.CrossRefGoogle Scholar
Bradley, JA, Mendenhall, N P. Novel Radiotherapy Techniques for Breast Cancer. Ann Rev Med 2018; 69: 30.130.12.CrossRefGoogle ScholarPubMed
Unnithan, J, Macklis, R M. Contralateral breast cancer risk. Int J Radiat Oncol Biol Phys 2003; 55 (3): 239246.Google Scholar
Zunino, S. Breast sub-volumes: preliminary results of a new concept to gradually decrease the dose from the tumor bed to the peripheral breast using simplified IMRT. Global J Breast Cancer Res 2016; 3 (2): 2732.CrossRefGoogle Scholar
Giorgia, N, Antonella, F, Alessandro, C, Eugenio, V, Luca, C. Planning strategies in volumetric modulated arc therapy for breast. Med Phys 2011; 38 (7): 40254031.Google Scholar
Mukesh, M, Harris, E, Jena, R, Evans, P, Coles, C. Relationship between irradiated breast volume and late normal tissue complications: a systematic review. Radiother Oncol 2012; 104 (1): 110.CrossRefGoogle ScholarPubMed
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on   local recurrence and 15-year survival: an overview of the randomised trials. The Lancet 2005; 366(9503): 20872106.CrossRefGoogle Scholar
Cuzick, J, Stewart, H, Rutqvist, L et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994; 12: 447453.CrossRefGoogle ScholarPubMed
Darby, S. Research pointers: mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ 2003; 326 (7383): 256257.CrossRefGoogle Scholar
Tapio, S. Pathology and biology of radiation-induced cardiac disease. J Radiat Res 2016; 57 (5): 439448.CrossRefGoogle ScholarPubMed
Adams, M J, Hardenbergh, P H, Constine, L S, Lipshultz, S E. Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 2003; 45 (1): 5575.CrossRefGoogle ScholarPubMed
Stewart, F A, Seemann, I, Hoving, S, Russell, N S. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol 2013; 25 (10): 617624.CrossRefGoogle ScholarPubMed
Mayo, C S, Moran, J M, Bosch, W et al. American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology. Int J Radiat Oncol Biol Phys 2018; 100: 10571066.CrossRefGoogle Scholar
Kry, S F, Alvarez, P, Cygler, J E et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys 2020; 47 (2): e19e51.CrossRefGoogle ScholarPubMed
Viamonte, A, da Rosa, L A R, Buckley, L A, Cherpak, A, Cygler, J E. Radiotherapy dosimetry using a commercial OSL system. Med Phys 2008; 35 (4): 12611266.CrossRefGoogle ScholarPubMed
International Atomic Energy Agency. Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Review of Testing Results. Vienna: International Atomic Energy Agency, 2005: 102.Google Scholar
O’Grady, F, Barsky, A R, Anamalayil, S et al. Increase in superficial dose in whole-breast irradiation with halcyon straight-through linac compared with traditional C-arm linac with flattening filter: in vivo dosimetry and planning study. Adv Radiat Oncol 2020; 5 (1): 120126.CrossRefGoogle ScholarPubMed
Esch, A V, Huyskens, D P, Hirschi, L, Scheib, S, Baltes, C. Optimized varian aSi portal dosimetry: development of datasets for collective use. J Appl Clin Med Phys 2013; 14 (6): 8299.CrossRefGoogle ScholarPubMed
Rojas-López, J, Venencia, D. Importance of beam-matching between truebeam STx and novalis Tx in pre-treatment quality assurance using portal dosimetry. J Med Phys 2021; 46 (3): 211220.Google ScholarPubMed
Rojas-López, J A, López-Pineda, E, Reynoso-Mejía, C A, Brandan, M E. Dependence of the TLD-300 glow curve on the photon field direction of incidence. Studies in air and in phantom for mammography and CT x-rays. AIP Conference Proceedings 2019; 2090: 030007-1–030007-7. American Institute of Physics Inc.CrossRefGoogle Scholar
Ramos-Avasola, S, Karstulovic, C, Gamboa, C, Gamarra, J, Catalán, M. Son reproducibles las mediciones dosimétricas a bajas dosis en cardiología intervencionista? Rev Chil Radiol 2016; 22 (2): 7075.Google Scholar
Freedman, G M, Li, T, Nicolaou, N, Chen, Y, Ma, C C M, Anderson, P R. Breast intensity-modulated radiation therapy reduces time spent with acute dermatitis for women of all breast sizes during radiation. Int J Radiat Oncol Biol Phys 2009; 74 (3): 689694.CrossRefGoogle ScholarPubMed
Bahreyni Toossi, M T, Mohamadian, N, Mohammadi, M et al. Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. Rep Pract Oncol Radiother 2020; 25 (3): 456461.CrossRefGoogle ScholarPubMed
Kole, A J, Kole, L, Moran, M S. Acute radiation dermatitis in breast cancer patients: challenges and solutions. Breast Cancer 2017; 9: 313323.Google ScholarPubMed
Pignol, J P, Olivotto, I, Rakovitch, E et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008; 26 (13): 20852092.CrossRefGoogle ScholarPubMed
Harsolia, A, Kestin, L, Grills, I et al. Intensity-modulated radiotherapy results in significant decrease in clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys 2007; 68 (5): 13751380.CrossRefGoogle ScholarPubMed
Supplementary material: File

Cardona-Maya et al. supplementary material

Cardona-Maya et al. supplementary material

Download Cardona-Maya et al. supplementary material(File)
File 328.4 KB