Published online by Cambridge University Press: 14 March 2012
This paper explores, in a very preliminary fashion, the relationship in the ancient world between the design and use of mechanical technology, social or political patronage and investment, and economic return, using three main areas as case studies: water-lifting devices, the water-powered grain mill, and the diverse uses of water-power in mining. The emphasis is on the use of devices and techniques which replaced human power with alternative power sources, and especially on water-power for driving machinery and hydraulic mining techniques employing the erosive power of water. It is argued that water-power was used on a wide scale and in diversified forms at an early date (by the first century A.D.), and that the use of mechanical technology to perform economically critical work had an important impact on economic performance and the potential for per capita growth, especially in the latter centuries B.C. and the first two centuries A.D. Conversely, in the third century A.D. the cessation of the employment of hydraulic mining techniques enabling large-scale extraction of gold and other metals may have had an adverse economic impact on the economy as a whole. Growth and progress do not necessarily follow a linear pattern of advance; technologies are lost as well as adopted.
This article has benefited greatly from discussions with friends and colleagues, none of whom is to be held responsible for the views expressed here. Lisa Fentress provided hospitality in Rome and Tuscany during which much of this article gestated; and Örjan Wikander, Philippe Leveau, Kevin Greene, Bruce Hitchner, Claude Domergue and Jacques Seigne kindly supplied offprints or previews of forthcoming work. Earlier versions of this research were presented to the Triennial Conference of the Classical Association in Oxford in July 2001, and to the Oxford Classical Archaeology Seminar in November 2001, and I thank the audiences on both occasions for comments. I also owe a debt of gratitude to the Journal's anonymous referees, one of whom in particular forced me considerably to improve the argument; I, of course, remain responsible for the resulting imperfections. Finally, I should like to thank Helena Tomas for information on the production figures for her grandmother's water-mill in Livno, Bosnia.
1 Singer, C., Holmyard, E. J., Hall, A. R. and Williams, T. L. (eds), A History of Technology vol. 2. The Mediterranean Civilizations and the Middle Ages c. 700 B.C. to c.A.D. 1500 (1956), viGoogle Scholar.
2 Finley, M. I., ‘Technology in the ancient world’, Economic History Review (2nd ser.) 12 (1959), 120–5Google Scholar.
3 Finley, M. I., ‘Technical innovation and economic progress in the ancient world’, Economic History Review (2nd ser.) 18 (1965), 29–45CrossRefGoogle Scholar.
4 Bloch, M., ‘Avènement et conquête du moulin à eau’, Annales d'histoire économique et sociale 36 (1935), 538–63Google Scholar; Gille, B., ‘Le moulin à eau. Une révolution technique médiévale’, Techniques et Civilisations 3 (1954), 1–15;Google ScholarWhite, L. T., ‘Technology and invention in the Middle Ages’, Speculum 15 (1940), 141–59;CrossRefGoogle Scholar L. T. White, Medieval Technology and Social Change (1962); L. T. White, Medieval Religion and Technology, Collected Essays (1978).
5 e.g. J. G. Landels, Engineering in the Ancient World (1978); D. Hill, A History of Engineering in Classical and Medieval Times (1984). The best general survey, though in need of updating, remains K. D. White's Greek and Roman Technology (1984), which raises doubts about primitivist views. See also Houston, G. W., ‘The state of the art: current work in the technology of ancient Rome’, The Classical Journal 85 (1989), 63–80,Google Scholar which stresses the importance of technology and shows how few works apply it to other questions.
6 The view that animist conceptions of nature inhibited technological progress was still being defended in J. P. Oleson, Greek and Roman Mechanical Water-lifting Devices: the History of a Technology (1984), 403. However, Antipater's poem on the water-mill (Anthologia Graeca IX.418), where nymphs are said to be leaping onto the water-wheel at Demeter's command, shows that animistic beliefs need entail no such inhibitions.
7 Wikander, Ö., ‘Water-mills in ancient Rome’, Opuscula romana 12 (1979), 13–36;Google ScholarVattenmöllor och möllare i det romerska riket (1980); ‘The use of water-power in classical antiquity’, Opuscula romana 13 (1981), 91–104;Google ScholarExploitation of Water-power or Technological Stagnation? A Reappraisal of the Productive Forces in the Roman Empire (1984); ‘Archaeological evidence for early water-mills — an interim report’, History of Technology 10 (1985), 151–79;Google Scholar‘Mill-channels, weirs and ponds. The environment of ancient water-mills’, Opuscula romana 15 (1985), 149–54;Google Scholar‘Ausonius’ saw-mills — once more’, Opuscula romana 17 (1989), 185–90;Google Scholar ‘Water-power and technical progress in Classical Antiquity’, in Ancient Technology. Symposium held by the Finnish Institute at Athens, 30.3–4.4 1987 (1990), 68–84; ‘Water mills and aqueducts’, in A. T. Hodge (ed.), Future Currents in Aqueduct Studies (1991), 141–8; ‘Water-mills in Europe: their early frequence and diffusion’, in Medieval Europe 1992. Pre-printed Papers vol. 3 (1992), 9–14;Google Scholar review of D. Castella et al., Le moulin hydraulique gallo-romaine d'Avenches “En Chaplix” (Aventicum VI) (1994), Opuscula romana 21 (1996), 131–3;Google Scholar ‘The water-mill’, in Ö. Wikander (ed.), Handbook of Ancient Water Technology (2000), 371–400.
8 K. Greene, The Archaeology of the Roman Economy (1986); ‘Perspectives on Roman technology’, Oxford Journal of Archaeology 9.1 (July 1990), 209–19;Google Scholar ‘How was technology transferred in the Western provinces?’, in M. Wood and F. Queiroga (eds), Current Research on the Romanization of the Western Provinces (1992), 101–5; ‘Technology and innovation in context: the Roman background to mediaeval and later developments’, Journal of Roman Archaeology 7 (1994), 22–33;CrossRefGoogle Scholar ‘Reflections on «Le temps de l'innovation». A personal response to the colloquium's principal themes’, in D. Meeks and D. Garcia (eds), Techniques et économie antiques et mediévales: le temps de l'innovation (1998), 227–9; ‘V. Gordon Childe and the vocabulary of revolutionary change’, Antiquity 73 no. 279 (March 1999), 97–109;CrossRefGoogle Scholar‘Technological innovation and economic progress in the ancient world: M. I. Finley re-considered’, Economic History Review 53 (2000), 29–59CrossRefGoogle Scholar.
9 P. Millett, ‘Productive to some purpose? The problem of ancient economic growth’, in D. J. Mattingly and J. Salmon (eds), Economies Beyond Agriculture in the Classical World (2000), 17–48, at 31–4. Much of this argument (p. 33) consists of a rehearsing of instances where spectacular technology was applied to ‘non-productive’ uses in entertainment and religious festivals. In these cases, technology was being harnessed for the purposes of political power; this does not, of course, say anything about the use or lack of use of technology for economically productive ends.
10 I will not attempt here to deal with siege engines, artillery, cranes, or transport technology and vehicles.
11 K. D. White, ‘“The base mechanic arts”? Some thoughts on the contribution of science (pure and applied) to the culture of the hellemstic age’, in P. Green (ed.), Hellenistic History and Culture (1993), 211–20.
12 Suetonius, Vespasian 18: ‘mechanico quoque grandis columnas exigua impensa perducturum in Capitolium pollicenti praemium pro commento non mediocre optulit, operam remisit praefatus sineret se plebiculam pascere.’ ‘To an engineer who promised to haul columns up to the Capitol at minimal expense, he offered no mean reward for his idea, but rejected the scheme saying he should allow himself to feed the plebs [i.e. by offering paid employment].’
13 cf. a recent discussion of this anecdote in Greene, op. cit. (n. 8, 2000), 49–50.
14 Quoted by Seneca in Ep. go as holding different views to Seneca's own on the utility of applied science.
15 On Hellenistic technical treatises, see e.g. M. J. T. Lewis, Millstone and Hammer: the Origins of Water Power (1997), 20–8, 38–57.
16 D. Rathbone, Economic Rationalism and Society in Third-Century A.D. Egypt. The Heroninos Archive and the Appianus Estate (1991).
17 D. P. Kehoe, The Economics of Agriculture on Imperial Estates of Roman North Africa (1988); Management and Investment on Estates in Roman Egypt during the Early Empire (1992); Investment, Profit and Tenancy. The Jurists and the Roman Agrarian Economy (1997).
18 Kehoe, op. cit. (n. 17, 1988).
19 Kehoe, op. cit. (n. 17, 1997).
20 An assumption made by Kehoe in his review of Rathbone: ‘Economic rationalism in Roman agriculture’, Journal of Roman Archaeology 6 (1994), 476–84,Google Scholar especially 483–4.
21 Suetonius, Claudius 20.
22 CIL VIII.211, 52–4.
23 Even the data given in Diocletian's Edict on Maximum Prices (15.52–5) refer only to the costs of the mill-stones for animal- and water-mills (1500 denarii for a horse-mill, 1250 for a donkey-mill, 2000 for a water-mill, 250 for a hand-quern); not to the mill structure and associated works.
24 Mattingly, D. J., ‘Oil for export? A comparison of Libyan, Spanish and Tunisian olive oil production in the Roman Empire’, Journal of Roman Archaeology 1 (1988), 33–56;CrossRefGoogle Scholar‘The olive boom. Oil surpluses, wealth and power in Roman Tripolitania’, Libyan Studies 19 (1988), 21–41;CrossRefGoogle Scholar R. B. Hitchner, ‘Olive production and the Roman economy: the case for intensive growth in the Roman Empire’, in M.-C. Amouretti and J.-P. Brun (eds), La production du vin et de l'huile en Méditerranée (1993), 499–508.
25 Thomas, R. G. and Wilson, A. I., ‘Water supply for Roman farms in Latium and South Etruria’, Papers of the British School at Rome 62 (1994), 139–96CrossRefGoogle Scholar.
26 Rathbone, op. cit. (n. 16), 220.
27 For ancient water-lifting devices, see Oleson, op. cit. (n. 6); J. P. Oleson, ‘Water-lifting’, in O. Wikander (ed.), Handbook of Ancient Water Technology (2000), 207–302.
28 Dalley, S., ‘Nineveh, Babylon and the hanging gardens: cuneiform and classical sources reconciled’, Iraq 56 (1994), 45–58CrossRefGoogle Scholar.
29 For the dates, see Lewis, op. cit. (n. 15), 20–1. Lloyd, G. E. R., ‘Hellenistic science’, in Walbank, F. W., Astin, A. E., Frederiksen, M. W. and Ogilvie, R. M. (eds), The Cambridge Ancient History vol. VII.I (1984), 326, 328Google Scholar dates Philo to c. 200 B.C., and Ctesibius to the last quarter of the third century B.C.
30 Lewis, op. cit. (n. 15), 26–36.
31 Lewis, op. cit. (n. 15), 32.
32 Philo, 5, translated by Lewis, op. cit. (n. 15), 32.
33 Lewis, op. cit. (n. 15), 46.
34 N. Lewis, Greeks in Ptolemaic Egypt: Case Studies in the Social History of the Hellenistic World (1986), 24–5.
35 N. Lewis, op. cit. (n. 34), 37–45.
36 G. Höbl, A History of the Ptolemaic Empire (2001), 61–3.
37 N. Lewis, op. cit. (n. 34), 44.
38 C. Orrieux, Les Papyrus de Zenon. L'horizon d'un grec en Egypte au IIIe siècle avant J.C. (1983).
39 Oleson, op. cit. (n. 6), 379–80.
40 Cosa: Oleson, op. cit. (n. 6), 201. London: ‘Roman water-lifting machinery unearthed in London’, British Archaeology 62 (December 2001), 7Google Scholar. The second lifting device was found in a well dating to A.D. 108/9 and destroyed by fire perhaps between A.D. 120 and 130.
41 Ayalon, E., ‘Typology and chronology of water-wheel (saqiya) pottery pots from Israel’, Israel Exploration Journal 50.3–4 (2000), 216–26Google Scholar.
42 Rathbone, op. cit. (n. 26), 223–4.
43 T. Schiøler, Roman and Islamic Water-lifting Wheels (1973), 16.
44 e.g. Gille, op. cit. (n. 4); Forbes, R. J., ‘Power’, in Singer, C., Holmyard, E. J., Hall, A. R. and Williams, T. I. (eds), A History of Technology vol. 2 (1956), 589–622;Google ScholarForbes, R. J., Studies in Ancient Technology vol. 2 (2nd edn, 1965)Google Scholar; White, op. cit. (n. 4, 1962); Finley, op. cit. (n. 3).
45 J. Gimpel, The Medieval Machine. The Industrial Revolution of the Middle Ages (2nd edn, 1992); F. Gies and J. Gies, Cathedral, Forge, and Waterwheel: Technology and Invention in the Middle Ages (1994); P. Malamina in preface to M. E. Cortese, L'acqua, il grano, il ferro. Opifici idraulici medievali nel bacino Farma-Merse (1997), 7–9.
46 Lewis, op. cit. (n. 15); see above p. 7.
47 Wikander, op. cit. (n. 7, 1984); see above p. 3.
48 Wikander, op. cit. (n. 7, 1985 History of Technology).
49 Wikander, op. cit. (n. 7, 2000).
50 Volpert, H.-P., ‘Die römischer Wassermühle einer villa rustica in München-Perlach’, Bayerische Vorgeschichtsblatter 62 (1997), 243–78;Google ScholarBrun, J.-P. and Borréani, M., ‘Deux moulins hydrauliques du Haut Empire romain en Narbonnaise. Villae des Mesclans à La Crau et de Saint-Pierre/Les Laurons aux Arcs’, Gallia. Fouilles et monuments archéologiques en France métropolitaine 55 (1998), 279–326Google Scholar. Fullerton: Cunliffe, B., The Danebury Environs Roman Project. 5. Fullerton Villa Excavation 2001, Interim Report (2001, unpub.)Google Scholar.
51 Personal observation, 1995 (St Germain — five stones on display and one in the reserves) and 1997 (Aquincum).
52 Holbrook, N. and Thomas, A., ‘The Roman and early Anglo-Saxon settlement at Wantage, Oxfordshire. Excavations at Mill Street, 1993–4’, Oxoniensia 61 (1996), 109–79Google Scholar.
53 Personal observation, 1998.
54 Ammianus Marcellinus 18.8.11; Wilson, A. I., ‘Water-mills at Amida: Ammianus Marcellinus 18.8.11’, Classical Quarterly n.s. 51.1 (2001), 231–6CrossRefGoogle Scholar. The passage is textually corrupt and has hitherto defied interpretation by commentators and translators: but a simple emendation of artandas to artatas restores the sense.
55 Identification by J.-P. Brun in 1997 of a supposedly first-century A.D. water-wheel 9 ft in diameter, found in the 1930s and now in the museum at Conimbriga: http://www.chron.com/content/chronicle/ae/art/9798/archives/0821portugal.html.
56 D. Castella (ed.), Le moulin hydraulique gallo-romain d'Avenche «en Chaplix» (1994). A proposed first-century A.D. water-mill at S. Giovanni di Ruoti in southern Italy is unconvincing and is better interpreted as a latrine, with tiled splash-back for flushing with a bucket: Small, A. M. and Buck, R. J., The Excavations of San Giovanni di Ruoti, vol. 1 (1994), 47–9,Google Scholar figs 22–7 pp. 305–9 and fig. 148 p. 429; cf. review by Greene, K. in American Journal of Archaeology 103.3 (1999), 577–9CrossRefGoogle Scholar. For latrines with tiled splash-backs, see Jansen, G. C. M., ‘Water systems and sanitation in the houses of Herculaneum’, Mededelingen van het Nederlands Instituut te Rome 50 (1991), 145–66,Google Scholar at 156–8.
57 Cszyz, W., ‘Eine baujuwarische Wassermühle im Paartal bei Dasing’, Antike Welt 25 (1994), 152–4Google Scholar.
58 P. Leveau, ‘Les moulins romains de Barbegal, les ponts-aqueducs du Vallon de l'Arc, et l'histoire naturelle de la vallée des Baux (Bilan de six ans de fouilles programmées)’, Comptes rendus des séances de l'Académie des inscriptions et belles-lettres (1995), 116–44.
59 Gounaropoulou, L. and Hatzopoulos, M. B., Epigraphes Kato Makedonias, vol. 1, Epigraphes Beroias (1998), no. 711Google Scholar. A 28, 50, 85 and Γ 17, [20]. The second-century date is derived from the lettering style of the inscription (p. 108).
60 Pleket, H. W., ‘Greek epigraphy and comparative ancient history: two case studies’, Epigraphica Anatolica 12 (1988), 25–37,Google Scholar at 27–8.
61 Lewis, op. cit. (n. 15).
62 Antipater of Thessalonica: Lewis, op. cit. (n. 15), 66–8; cf. A. Gauchéron, ‘Who was Antipater?’, in The International Molinological Society. Eighth International Symposium on Molinology, Aberystwyth, July 3–10 1993. Conference Papers (1993), 25–36. However, R. J. A. Wilson, ‘Aqueducts and water supply in Greek and Roman Sicily: the present status quaestionis’, in G. C. M. Jansen (ed.), Cura Aquarum in Sicilia (2000), 5–36, at 13–14, suggests that the Tremilia aqueduct at Syracuse, which terminates at the edge of a precipice on Epipolae, may have been designed to drive a water-mill; and that its technique of construction may suggest a date under Hiero II (270–215 B.C.). If so, this would represent a very early spread of the technique to Sicily. While this would be tempting in the light of what we know about the intellectual climate of Hiero's Syracuse, and his attempts to make Archimedes apply science to practical ends, both the suggested mill and the date remain hypothetical.
63 Chesters (on the basis of a channel which is probably a mill-race) and Poltross Burn (for the nearby fort of Aesica): F. G. Simpson, Watermills and Military Works on Hadrian's Wall: Excavations in Northumberland, 1907–1913 (1976). (The supposed mill at Willowford is in fact simply a bridge abutment; personal observation.) Powered mill-stones indicate a possible water-mill at Vindolanda, which certainly had a stream suitable for driving mills (personal observation).
64 Wilson, A. I., ‘Water-power in North Africa and the development of the horizontal water-wheel’, Journal of Roman Archaeology 8 (1995), 499–510CrossRefGoogle Scholar.
65 M. Matteini Chiari (ed.), Saepinum (1982), 172.
66 Benoit, F., ‘L'usine de meunerie hydraulique de Barbegal (Arles)’, Revue archéologique sixième série 15.1 (1940), 19–80;Google Scholar Leveau, op. cit. (n. 58); Leveau, P., ‘The Barbegal water-mill in its environment: archaeology and the economic and social history of antiquity’, Journal of Roman Archaeology 9 (1996), 137–53;CrossRefGoogle ScholarBellamy, P. S. and Hitchner, R. B., ‘The villas of the Vallée des Baux and the Barbegal Mill: excavations at la Mérindole villa and cemetery’, Journal of Roman Archaeology 9 (1996), 154–76;CrossRefGoogle ScholarWilson, A. I., ‘Deliveries extra urbem: aqueducts and the countryside’, Journal of Roman Archaeology 12 (1999), 314–31,CrossRefGoogle Scholar at 325–6.
67 Sellin, R. H., ‘The large Roman water-mill at Barbegal (France)’, History of Technology 8 (1983), 100–1Google Scholar.
68 A. T. Hodge, ‘A Roman factory’, Scientific American (November 1990), 58–64, at 60.
69 Anders Jesperson apud Smith, N. A. F., ‘The origins of water power: a problem of evidence and expectations’, Transactions of the Newcomen Society 55 (1983–1984), 67–84,CrossRefGoogle Scholar at 82–3, gives the output from an overshot mill on Fyn at 20 kg/hour.
70 The mill at Livno is owned and still (2002) operated by Janja Tomas. In the 1950s this mill used to grind flour for villagers from up to a day's travel around Livno, and a hostel was established in a building opposite the mill to accommodate customers of the mill overnight, illustrating how a facility such as this can generate its own knock-on service economy. I am very grateful to Helena Tomas for providing information about the Livno mill.
71 Wilson, A. I., ‘Mulini, acquedotti e assedi sul Gianicolo’, Forma Urbis 5.2 (Febbraio 2000), 32–7;Google Scholar‘The Water-mills on the Janiculum’, Memoirs of the American Academy in Rome 45 (2001), 219–46Google Scholar. For earlier excavations of part of the complex cf. M. Bell, ‘Mulini ad acqua sul Gianicolo’, in S. Quilici Gigli (ed.), Archeologia laziale XI (1992), 65–72; ‘An imperial flour mill on the Janiculum’, in Le ravitaillement en blé de Rome et des centres urbains des débuts de la République jusqu'au Haul Empire (1994), 73–89.
72 The Curiosum and the Notitia, ed. A. Nordh, Libellus de Regionibus Urbis Romae (1949); Codex Theodosianus. 14.15.4 (Edict of Honorius and Arcadius, A.D. 398); cf. Wikander, op. cit. (n. 7, 1979), 21–3; Prudentius, Contra Symmachum 2.948–50 (A.D. 402); CIL VI.1711 (Edict of the City Prefect Dynamius, A.D. 475/488); Cassiodorus, Variae 11.39.1–2 (A.D. 533/537); Procopius, Wars 5.19.8–19 (events of A.D. 537); Einsiedeln Itinerary, ed. G. Walser, Die Einsiedler Inschriftensammlung und der Pilgerführer durch Rom (Codex Einsidlensis 326): Facsimile, Umschrift, Übersetzung und Kommentar (1987), 148–9, 183–4.
73 Wikander, op. cit. (n. 7, 1979), 20, 26–7.
74 Wilson, op. cit. (n. 71, 2001), 225–7.
75 For a possible mill on the Aqua Alsietina on the Janiculum, see van Buren, A. W. and Stevens, G. P., ‘The Aqua Alsietina on the Janiculum’, Memoirs of the American Academy in Rome 6 (1927), 137–46,Google Scholar at 139.
76 Wilson, op. cit. (n. 71, 2001), for the detailed arguments. See also Wikander, op. cit. (n. 7, 1979).
77 Schiøler, T. and Wikander, Ö., ‘A Roman water-mill in the baths of Caracalla’, Opuscula romana 14 (1983), 47–64Google Scholar.
78 F. Coarelli, ‘La situazione edilizia di Roma sotto Severo Alessandro’, in L'Urbs: espace urbain et histoire (Ier siècle av. J.-C– IIIe siècle ap. J.-C): actes du colloque international organisé par le Centre national de la recherche scientifique et l'Ecole française de Rome (Rome, 8–12 mat 1985) (1987), 429–56.
79 Prudentius, Contra Symmachum 1.949–50:
quis venit esuriens magni ad spectacula circi,
quae regio gradibus vacuis ieiunia dira
sustinet, aut quae Ianiculi mola muta quiescit?
80 Oleson, J. P., ‘A Roman water-mill on the Crocodilion river near Caesarea’, Zeitschrift des Deutschen Palästina-Vereins 100 (1984), 137–52Google Scholar. A horizontally-wheeled mill by the same dam may be late Roman, but there are problems inherent in the dating techniques used; and the interpretation of this as a turbine mill is unconvincing; it may instead be a drop-tower mill of late or post-Roman type: Schiøler, T., ‘Vandmollerne ved Krokodillerfloden’, Sfinx 8 (1985), 12–14;Google Scholar‘The watermills at the Crocodile River: a turbine mill dated to 345–380 A.D.’, Palestine Exploration Quarterly 121.2 (1989), 133–43,Google Scholar with comments in Wilson, op. cit. (n. 64).
81 Röder, J. and Röder, G., ‘Die antike Turbinenmühle in Chemtou’, in Rakob, F. (ed.), Simitthus vol. 1 (1993), 95–102;Google ScholarRakob, F., ‘Der Neufund einer römischen Turbinenmühle in Tunesien’, Antike Welt 24.4 (1993), 286–7;Google Scholar Wilson, op. cit. (n. 64).
82 Carrié, J. M., ‘Les distributions alimentaires dans les cités de l'empire romain tardif’, Melanges de l'École française de Rome, Antiquité 87 (1975), 995–1101,CrossRefGoogle Scholar esp. 1070–86, 1090–4, presents evidence for municipal annonae involving bread distributions at Constantinople, Alexandria, and possibly Antioch, and points out that the corn dole archive at Oxyrhyncus suggests that they may have existed in smaller cities as well — a suggestion confirmed by CIL VIII.8480 cf. p. 1920 (= ILS 5596) from Sétif (unknown to Carrié), which clearly refers to baking bread for the annonam publicam (see below).
83 CIL VIII.8480 cf. p. 1920 (= ILS 5596): ‘pro felicitate temporum beatorum [dominor(um)]∣ nostrorum Valentiniani Theodosi et [Arcadi] ∣ aeternorum principum unum quo dd(ecuriones?) e[t] pr[inci]∣pales ac cives gravi quatiebantur inco[mmodo molas ad annonam] ∣ [p]ublicam a veteribus institutas omn[i renova∣t]u operis ruinis inminentibus destit[ui detersa] ∣ veteris squaloris inluviae adi[ecto novo] ∣ cultu sua instantia reformavit [instrumento] ∣ pistono exornatas ad annon[ae publicae] ∣ coctionem pistoribus tradi[dit et ita populum] ∣ pavit F1(avius) Maecius Constans v(ir) p(erfectissimus) praes(es) prov(inciae) ∣ Mauretaniae Sitif(ensis) curam agente curatore ∣ rei p(ublicae) splendid(issimae) col(oniae) Sitifensis.’ ‘For the happiness of the blessed times of our lords Valentinian, Theodosius and [Arcadius], eternal princes, Flavius Maecius Constans, eques, governor of the province of Mauretaniae Sitifensis, by the agency of the curator rei publicae of the most splendid colony of Sitifis, had restored at his instigation the one grave inconvenience by which the decurions and leading citizens and people were seriously troubled, [the mills?] established by the ancients for the public [dole], with every repair of the structure which had been out of service and on the point of collapse, cleaned out the flood deposits of old filth and add[ed new] decoration, fitted them out with baking equipment for cooking the [public] dole, gave it to the bakers and so fed the people.’ Further discussion in A. Wilson, I., Water Management and Usage in Roman North Africa: a Social and Technological Study, D. Phil, thesis, University of Oxford (1997), 198, 200–1, 294–5Google Scholar.
84 M. Bovis and L. Leschi, Algérie antique (1952), 155, 157.
85 Hierapolis: Pleket, op. cit. (n. 60), 27–8. Beroe: Gounaropoulou and Hatzopoulos, op. cit. (n. 59), no. 7. Antioch: Libanius, Or. 4.29.
86 Orcistos: Chastagnol, A., ‘L'inscription constantinienne d'Orcistus’, Mélanges de l'École française de Rome, Antiquité 93 (1981), 381–416,CrossRefGoogle Scholar at 393–8 (dating) and 407–9 (mills). Amida: Wilson, op. cit.(n. 54).
87 Gille, B., ‘Machines’, in Singer, C., Holmyard, E. J., Hall, A. R. and Williams, T. I. (eds), A History of Technology vol. 2 (1956), 629–58,Google Scholar at 638–45; White, op. cit. (n. 4, 1962), 79–84; Gimpel, op. cit. (n. 45), 13–16; Gies and Gies, op. cit. (n. 45), 114–15.
88 White, op. cit. (n. 4, 1962), 82–3; refuted by Simms, D. L., ‘Water-driven saws, Ausonius, and the authenticity of the Mosella’, Technology and Culture 24 (1983), 635–43;CrossRefGoogle Scholar‘Water-driven saws in late antiquity’, Technology and Culture 26 (1985), 275–6;CrossRefGoogle Scholar Wikander, op. cit. (n. 7, 1981), 99–100; Wikander, op. cit. (n. 7, 1989).
89 Gregory of Nyssa, In Ecclesiasten 3; Wikander, op. cit. (n. 7, 1981).
90 Wikander, op. cit. (n. 7, 1981); ‘Industrial applications of water-power’, in Ö. Wikander (ed.), Handbook of Ancient Water Technology (2006), 401–10; Lewis, op. cit. (n. 15).
91 Seigne, J., ‘Une scierie méchanique au VIe siècle’, Archéologia 385 (2002), 36–7Google Scholar. I am very grateful to Jacques Seigne for discussing the evidence with me in advance of publication.
92 Lewis, op. cit. (n. 15), 84–8, 101–5.
93 Lewis, op. cit. (n. 15), 101–5. The interpretation of mola as trip-hammer is suggested by a fragment of Pomponius; see Lewis, op. cit. (n. 15), 94.
94 Lewis, op. cit. (n. 15), 101–5; Vita S. Romani 52 and 57 (F. Martine, Vie des pères du Jura (1968), 296, 300): ‘strenue in vicino flumine sub ipso Condatescensi coenobio mohnas pisasque fraternis usibus gubernabat.’
95 Lewis, op. cit. (n. 15), 101–5.
96 Lewis, op. cit. (n. 15), 111.
97 e.g. in Gaul — a wooden washing table found at Seix for washing lead ore (Daubrée, , ‘Aperçu historique sur l'exploitation des mines metalliques dans la Gaule. Notice supplémentaire’, Revue archéologique 2e série 41.1 (1881), 201–21, 261–84 and 327–53,Google Scholar at 269 and fig. 14), and tiled washing channels from Massiac (Tixier, L., ‘A Massiac (Cantal), une exploitation minière gallo-romaine’, Archéologia. Trésors des âges 117 (Avril 1978), 30–7)Google Scholar.
98 On the terminology of deposits, see Woods, A., ‘Mining’, in Wacher, J. S. (ed.), The Roman World vol. 2 (1987), 611–34,Google Scholar at 612–13.
99 For overviews of hydraulic mining, see Bird, D. G., ‘The Roman gold-mines of north-west Spain’, Banner Jahrbücher 172 (1972), 36–64;Google Scholar Woods, op. cit.(n. 98); P. T. Craddock, Early Metal Mining and Production (1995), 87–92; A. I. Wilson, ‘Industrial uses of water’, in Ö. Wikander (ed.), Handbook of Ancient Water Technology (2000), 127–49, at 140–2; D. G. Bird, ‘Aspects of Roman gold mining: Dolaucothi, Asturias and Pliny’, in N. Higham (ed.), Archaeology of the Roman Empire: a Tribute to the Life and Works of Professor Barri Jones (2001), 265–75. Woods, op. cit. (n. 98), 625–6, notes that the term ‘hydraulicing’, used in earlier publications for ground-sluicing, really applies to the modern method of excavation by water under high pressure from nozzles, and should be avoided in a Roman context.
100 Lewis, P. R. and Jones, G. D. B., ‘Roman gold-mining in north-west Spain’, JRS 60 (1970), 169–85,Google Scholar at 184; Bird, op. cit. (n. 99, 2001), 271.
101 C. Domergue and G. Hérail, ‘L'utilisation de la photographie aérienne oblique en archéologie et géomorphologie minières: les mines d'or romaines du nord-ouest de l'Espagne’, in A. Bazzana and A. Humbert (eds), Prospections aériennes: les paysages et leur histoire (1983), 89–103.
102 Lewis and Jones, op. cit. (n. 100); Jones, R. F. J. and Bird, D. G., ‘Roman gold-mining in North-West Spain, II: workings on the Rio Duerna’, JRS 62 (1972), 59–74;Google Scholar Bird, op. cit. (n. 99, 1972); Woods, op. cit. (n. 98); Domergue, C., ‘A propos de Pline, Naturalis historia, 33, 70–78, et pour illustrer sa description des mines d'or romaines d'Espagne’, Archivo español de arqueología 45–47 (1972–1974), 499–528;Google Scholar C. Domergue, Les mines de la Péninsule Ibérique dans l'antiquité romaine (1990).
103 Bird, op. cit. (n. 99, 1972), 48.
104 Lewis and Jones, op. cit. (n. 100), 174–8.
105 Lewis and Jones, op. cit. (n. 100), 178–81.
106 Jones, G. D. B., Blakey, I. J. and MacPherson, E. C. F., ‘Dolaucothi: the Roman aqueduct’, Bulletin of the Board of Celtic Studies 19 (1960), 71–84Google Scholar and pls III–V; Lewis, P. R. and Jones, G. D. B., ‘The Dolaucothi gold mines, I: the surface evidence’, The Antiquaries Journal 49.2 (1969), 244–72;CrossRefGoogle Scholar Bird, op. cit. (n. 99, 2001).
107 Jones and Bird, op. cit. (n. 102), 71–3.
108 Oleson, op. cit. (n. 6), 191, 200, 221, 249–50, 270–2.
109 M. J. T. Lewis, ‘Railways in the Greek and Roman world’, in A. Guy and J. Rees (eds), Early Railways. A Selection of Papers from the First International Early Railways Conference (2001), 8–19, at 15; C. A. Ferreira Almeida, ‘Aspectos da mineração romana de ouro em Jales e Tresminas (Tras-os-Montes)’, in XII Congreso Nacional de Arqueología, Jaen 1971 (1973), 553–62, at 559–60; Wahl, J., ‘Três Minas. Vorbericht über die archäologischen Untersuchungen im Bereich des römischen Goldbergwerks 1986/1987’, Madrider Mitteilungen 29 (1988), 221–44,Google Scholar at 229–30.
110 References collected in Lewis, op. cit. (n. 15), 106–10; Burnham, B. C., ‘Roman mining at Dolaucothi: the implications of the 1991–3 excavations near Carreg Pumsaint’, Britannia 28 (1997), 325–36,CrossRefGoogle Scholar at 333–5. Examples have been found by the hundred in north Portugal at Três Minas (where all datable material is from the first and second centuries A.D., with no evidence of activity continuing into the third century) and nearby Campo de Jales (where datable material is mid–late first century A.D.): de Mello Nogueira, A., ‘Uma exploração de minas de ouro da época romana’, Revista de Arqueologia 3 (1936), 201–6,Google Scholar at 203; Ferreira Almeida, op. cit. (n. 109), 561–2 and fig. III; Wahl, op. cit. (n. 109), 230–2 and Taff. 41, 44a, 45a, 56a (ore-crushing), 239–44 (dating); J. Wahl, ‘Tres Minas: Vorbericht über die archäologischen Ausgrabungen im Bereich des römischen Goldbergwerks 1986/87’, in H. Steuer and U. Zimmerman (eds), Montanarchäologie in Europa (1993), 123–52, at 141 and Abb. 19. Other cudes stones are reported from gold mines at Bachicón de Fresnedo (Allande, Asturias), Cecos (Ibias, Asturias), Castropodome, Andiñuela and Corta del Valladar de Pozos (Léon); El Molinillo (Ciudad Reale y Toledo): Sánchez-Palencia, F.-J., ‘Los “Morteros” de Fresnedo (Allande) y Cecos (Ibias) y los lavanderos de oro romanos en el noroeste de la Peninsula Ibérica’, Zephyrus 37/38 (1984/1985), 349–59;Google ScholarSánchez-Palencia, F.-J., ‘La explotacion del oro en la Hispania romana: sus inicios y precedentes’, in Domergue, C. (ed.), Mineria y metalurgia en las antiguas civilizaciones Mediterraneas y Europas vol. 2 (1989), 35–49,Google Scholar at 41, 46, 49 and fig. 5 (misinterpreted as components of washing tables; but the edges of the blocks are too irregular to fit together in the manner postulated). Domergue mentions but does not illustrate anvil stones from gold mines at Las Rubias, Faidel and Nava de Ricomalillo, and silver/lead mines at Sortijón de Cuzna and Catrezo Rajado; but these, like the illustrated examples from Lomo de Perro, mentioned in the same paragraph, are anvils used in non-mechanical crushing operations (Domergue, pers. comm.; op. cit. (n. 102, 1990), 497 and pl. xxviib).
111 Contrast the irregularity of wear patterns on anvil stones from Lomo de Perro (illustrated in Domergue, C., Catalogue des mines et des fonderies antiques de la Péninsule Ibérique, vol. 2 (1987)Google Scholar, pl. XLIa) with the regular wear on the cudes stones.
112 Bird, op. cit. (n. 99, 1972), 44–5. Cudes from ore-crushing machines at Fresnedo are reported (but misidentified) by Sánchez-Palencia, op. cit. (n. 110, 1989), 41.
113 Daubrée, op. cit. (n. 97), 269 (Seix): ‘De grandes meules de granite et d'autres pierres dures ont été rencontrées dans le voisinage’; 271 and fig. 15 (Mont Marcus): a lava millstone 55 cm in diameter; fig. 15 shows no evidence of a handle socket, so this does not seem to be a hand-quern. Disc-shaped mill-stones like this are characteristic of water-mills; human- or animal-powered stones are usually hourglass-shaped with a steeper grinding profile. Rotary millstones for grinding ore, with a diameter of 60 cm, are also published from the gold mines at Três Minas (Ferreira Almeida, op. cit. (n. 109), 562 and fig. III; Wahl, op. cit. (n. 109), 232, and Taf. 45 b–e); but as here the lower stones are not pierced for the passage of a spindle, they probably functioned like large hand-querns, and were not water-powered.
114 Lewis and Jones, op. cit. (n. 106), 263 and pl. L c. For other millstones from Dolaucothi, apparently of similar size, see Burnham, op. cit. (n. no), 334, and pl. XXIX b.
115 Vipasca II, ch. 4; see Domergue, C., ‘La mine antique d'Aljustrel (Portugal) et les tables de bronze de Vipasca’, Conimbriga 22 (1983), 5–193;Google Scholar S. Lazzarini, Lex Metallis Dicta. Studi sulla seconda tavola di Vipasca (2001) (non vidi). Opinion differs as to whether this law was more widely applicable; Domergue (op. cit., 153–71) argues that it was probably specific to Vipasca, and at most it could have been applicable only to the silver and copper mines of south-west Spain.
116 Jones, R. F. J., ‘The Roman military occupation of north-west Spain’, JRS 66 (1976), 45–66,Google Scholar at 52.
117 Jones, op. cit. (n. 116), 62.
118 Domergue, op. cit. (n. 102, 1990), 330–1 for names attested on lead ingots of the first century from Spanish mines producing lead and silver.
119 Hong, S., Candelone, J.-P., Patterson, C. C., and Boutron, C. F., ‘Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations’, Science 265 (1994), 1841–3;CrossRefGoogle ScholarPubMedHong, S., Candelone, J.-P., Patterson, C. C. and Boutron, C. F., ‘History of ancient copper smelting pollution during Roman and medieval times recorded in Greenland ice’, Science 272 (1996), 246–9;CrossRefGoogle ScholarRosman, K. J. R., Chisholm, W., Hong, S., Candelone, J.-P. and Boutron, C. F., ‘Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 B.C. to 300 A.D.’ Environment, Science and Technology 31 (1997), 3413–6CrossRefGoogle Scholar.
120 Rosman et al., op. cit. (n. 119).
121 Hong et al., op. cit. (n. 119, 1996).
122 Syme, R., ‘Pliny the Procurator’, Harvard Studies in Classical Philology 73 (1969), 201–36,CrossRefGoogle Scholar at 218, supposes that these figures might relate to the reign of Augustus.
123 Crawford, M., ‘Finance, coinage and money from the Severans to Constantine’, in Aufstieg und Niedergang der römischen Welt vol. II.2 (1975), 560–93;Google ScholarHopkins, K., ‘Taxes and trade in the Roman Empire (200 B.C.–A.D. 400)’ JRS 70 (1980), 101–25,Google Scholar at 123.
124 Hopkins, op. cit. (n. 123), 113, fig. 4.
125 Hopkins, op. cit. (n. 123), 107–8. The figure of 2 per cent is based on Patterson, C. C., ‘Silver stocks and losses in ancient and medieval times’, Economic History Review (2nd ser.) 25 (1972), 205–35,CrossRefGoogle Scholar at 207–10, who calculated a loss rate of 3 per cent for American silver coins in 1922–1962, and then guessed at a lower figure for the Roman Empire.
126 Howgego, C., ‘The supply and use of money in the Roman world 300 B.C. to A.D. 300’, JRS 82 (1992), 1–31,Google Scholar at 5–6.
127 Corbier, M., ‘Histoire monétaire, histoire des prix, histoire des mines’, in Domergue, C. (ed.), Mineria y metalurgia en las antiguas civilizaciones Mediterraneas y Europas vol. 2 (1989), 183–94;Google Scholar Howgego, op. cit. (n. 126), 4–8.
128 Jones, G. D. B., ‘The Roman mines at Riotinto’, JRS 70 (1980), 146–65Google Scholar.
129 Rothenberg, B., Palomero, F. Garcia, Bachmann, H.-G., and Goethe, J. W., ‘The Rio Tinto enigma’, in Domergue, C. (ed.), Mineria y metalurgia en las antiguas civilizaciones Mediterraneas y Europas vol. 1 (1989), 57–70Google Scholar.
130 Rosman et al., op. cit. (n. 119), 3415–16.
131 Jones, op. cit. (n. 128), 162; Historia Augusta: M. Antoninus 22.9–11. Mining at Vipasca continued into the second half of the third century A.D., with some evidence for occupation until the late fourth or early fifth century, although the extent of mining activity at this date is unknown (Domergue, op. cit. (n. 115), 31–2).
132 Jones, op. cit. (n. 128), 163.
133 R. P. Duncan-Jones, Money and Government in the Roman Empire (1994), 215–19.
134 Crawford, op. cit. (n. 123), 564, 574–5.
135 K. Hopkins (‘Economic growth and towns in classical antiquity’, in P. Abrams and E. A. Wrigley (eds), Towns in Societies. Essays in Economic History and Historical Sociology (1978), 35–77; op. cit. (n. 123)) makes a prima facie case for growth in the period 200 B.C.–A.D. 200 (cf. the qualifications of Millett, op. cit. (n. 9), arguing that most of such growth was probably concentrated in the final two centuries of that period). R. B. Hitchner (op. cit. (n. 24); ‘“The advantages of wealth and luxury”: the case for economic growth in the Roman empire’, in J. Manning and I. Morris (eds), The Ancient Economy: Evidence and Models (forthcoming 2002)) argues for intensive aggregate and per capita growth in the Roman period.
136 Gies and Gies, op. cit. (n. 45), 115–16, noting also the existence of independent water-mills not under feudal control.