Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T12:36:19.119Z Has data issue: false hasContentIssue false

Separably closed fields with higher derivations I

Published online by Cambridge University Press:  12 March 2014

Margit Messmer
Affiliation:
Department of Mathematics, Mail Distribution Center, CCMB/370, Notre Dame, IN 46556-5683, E-mail: mmessmer%mathcs%iusb@vines.iusb.indiana.edu
Carol Wood
Affiliation:
Department of Mathematics, Wesleyan University, Middletown, CT06459, USA, E-mail: cwood@eagle.wesleyan.edu

Abstract

We define a complete theory SHFe of separably closed fields of finite invariant e (=degree of imperfection) which carry an infinite stack of Hasse-derivations. We show that SHFe has quantifier elimination and eliminates imaginaries.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Chang, C. and Keisler, H., Model theory, North-Holland, 1973.Google Scholar
[2]Delon, F., Idéaux et types sur les corps séparablement clos, Supplément au Bulletin de la Société Mathématique de France, vol. 116 (1988), no. 33.Google Scholar
[3]Eršov, J., Fields with a solvable theory, Doklady Akadéemii Nauk SSSR, vol. 174 (1967), pp. 1920, English translation, Soviet Mathematics, vol. 8 (1967), pp. 575–576.Google Scholar
[4]Evans, E., Pillay, A., and Poizat, B., A group in a group, Algebra i Logika, vol. 3 (1990), pp. 368378.Google Scholar
[5]Hasse, H., Theorie der höheren differentiale in einem algebraischen funktionenkörper mit vol-lkommenem konstantenkörper bei beliebiger Charakteristik, Journal für Mathematik, vol. 175 (1936), pp. 5054.Google Scholar
[6]Hrushovski, E., The Mordell-Lang conjecture for function fields, preprint.Google Scholar
[7]Jacobson, N., Lectures in abstract algebra III, D. Van Nostrand Company, New York, 1964.CrossRefGoogle Scholar
[8]Kolchin, E., Differential algebra and algebraic groups, Academic Press, 1973.Google Scholar
[9]Messmer, M., Groups and fields interpretable in separably closed fields, Transactions of the American Mathematical Society, to appear.Google Scholar
[10]Okugawa, K., Basic properties of differential fields of arbitrary characteristic and the Picard-Vessiot theory, Journal of Mathematics of Kyoto University, vol. 2 (1963), no. 3, pp. 294322.Google Scholar
[11]Poizat, B., Une théorie de Galois imaginaire, this Journal, vol. 48 (1983), pp. 11511171.Google Scholar
[12]Poizat, B., Cours de théorie des modèles, Nur alMantiq walMa'arifah, Villeurbanne, France, 1987.Google Scholar
[13]Wood, C., The model theory of differential fields of characteristic p ≠ 0, Proceedings of the American Mathematical Society, vol. 40 (1973), pp. 577584.Google Scholar
[14]Wood, C., Prime model extensions for differential fields of characteristic p ≠ 0, this Journal, vol. 39 (1974), pp. 469477.Google Scholar
[15]Wood, C., The model theory of differential fields revisisted, Israel Journal of Mathematics, vol. 25 (1976), pp. 331352.CrossRefGoogle Scholar
[16]Wood, C., Notes on the stability of separably closed fields, this Journal, vol. 44 (1979), pp. 412416.Google Scholar