Hostname: page-component-6d856f89d9-xkcpr Total loading time: 0 Render date: 2024-07-16T04:39:02.202Z Has data issue: false hasContentIssue false

Arithmetic properties of certain recurrence sequences

Published online by Cambridge University Press:  09 April 2009

A. Perelli
Affiliation:
Scuola Normale Superiore 56100 Pisa, Italy
U. Zannier
Affiliation:
Scuola Normale Superiore 56100 Pisa, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical theorem states that if a polynomial with integral coefficients is an in mth power for every integral value of its argument, then it is the mth power of a polynomial with integral coefficients.

In this paper we deal with analogous problems concerning functions which arise as solutions of recurrence equations with constant coefficients.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1984

References

[1]Benzaghou, B., ‘Algèbres de Hadamard’, Bull. Soc. Math. France 98 (1970), 209252.CrossRefGoogle Scholar
[2]Besicovitch, A. S., ‘On the linear independence of fractional powers of integers’, J. London Math. Soc. 15 (1940), 36.CrossRefGoogle Scholar
[3]Cashwell, E. D. and Everett, C. J., ‘Formal power series,’ Paciftc J. Math. 13 (1963), 4564.CrossRefGoogle Scholar
[4]Cassels, W. S., An introduction to diophantine approximation (Cambridge Univ. Press, 1957).Google Scholar
[5]Davenport, H., Lewis, D. J. and Schinzel, A., ‘Polynomials of certain special types’, Acta Artith. 9 (1964), 107116.CrossRefGoogle Scholar
[6]Gelfond, A. O., Calcul des différences finites (Dunod, 1963).Google Scholar
[7]Lewis, D. J. and Morton, P., ‘Quotients of polynomials and a theorem of Pisot and Cantor,’ J. Fac. Sci. Univ. Tokyo 28(1982), 813822.Google Scholar
[8]Lovasz, L., ‘On finite Dirichlet series’, Acta Math Acad. Sci. Hungar. 22(1972), 227231CrossRefGoogle Scholar
[9]Perelli, A. and Zannier, U., ‘Una proprietá aritmetica dei polinomi,’ Boll. Un. Mat. Ital. A 17 (1980), 199202.Google Scholar
[10]Pólya, G. and Szegö, G., Problems and theorems in analysis, vol. II (Springer-Verlag, 1976).CrossRefGoogle Scholar
[11]Ribemboim, P., ‘Polynomials whose values are powers,’ J. Reine Angew. Math. 268/269 (1974), 3440.Google Scholar
[12]van der Poorten, A. J., ‘Some problems of recurrent interest,’ to appear in the Proceedings of the János Bólyai Colloquium, 1981.Google Scholar