Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-29T19:23:18.294Z Has data issue: false hasContentIssue false

Estimation and filtering of fractional generalised random fields

Published online by Cambridge University Press:  09 April 2009

J. M. Angulo
Affiliation:
Departamento de Estadística e Investigación Operativa Universidad de GranadaCampus Fuente Nueva s/n E-18071 GranadaSpain e-mail: jmangulo@goliat.ugr.es
M. D. Ruiz-Medina
Affiliation:
School of Mathematical Sciences Queensland University of TechnologyGPO Box 2434 Brisbane QLD 4001Australia e-mail: v.anh@fsc.qut.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper considers the estimation and filtering of fractional random fields, of which fractional Brownian motion and fractional Riesz-Bessel motion are important special cases. A least-squares solution to the problem is derived by using the duality theory and covariance factorisation of fractional generalised random fields. The minimum fractional duality order of the information random field leads to the most general class of solutions corresponding to the largest function space where the output random field can be approximated. The second-order properties that define the class of random fields for which the least-squares linear estimation problem is solved in a weak-sense are also investigated in terms of the covariance spectrum of the information random field.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Anh, V. V., Angulo, J. M. and Ruiz-Medina, M. D., ‘Possible long-range dependence in fractional random fields’, J. Statist. Plan. Inference 80 (1999), 95110.CrossRefGoogle Scholar
[2]Anh, V. V., Angulo, J. M., Ruiz-Medina, M. D. and Tieng, Q., ‘Long-range dependence and second-order ontermittency of two-dimensional turbulence’, Environ. Modelling and Software 13 (1998), 233238.CrossRefGoogle Scholar
[3]Anh, V. V. and Heyde, C. C. (eds.), ‘Special issue on long-range dependence’, J. Statist. Plan. Inference 80 (1999).Google Scholar
[4]Anh, V. V., Gras, F. and Tsui, H. T., ‘Multifractal description of natural scenes’, Fractals 4 (1996), 3543.CrossRefGoogle Scholar
[5]Anh, V. V., Ruiz-Medina, M. D. and Angulo, J. M., ‘Covariance factorisation and abstract representation of generalised random fields’, Bull. Austral. Math. Soc. 62 (2000), 319334.CrossRefGoogle Scholar
[6]Barabasi, A. L. and Stanley, H. E., Fractal concepts in surface growth (Cambridge University Press, London, 1995).CrossRefGoogle Scholar
[7]Barnsley, M. F. and Hurd, L. P., Fractal image compression (A. K. Peters, 1993).Google Scholar
[8]Beran, J., Statistics for long-memory processes (Chapman and Hall, New York, 1994).Google Scholar
[9]Bronshtein, I. N. and Semendyayer, K. A., Handbook of mathematics (Verlag Ham Deutsch, Van Nostrand Reinhold Company, New York, 1985).Google Scholar
[10]Dautray, R. and Lions, J. L., Mathematical analysis and numerical methods for science and technology, Vol. 2, Functional and variational methods (Springer, New York, 1985).Google Scholar
[11]Dautray, R. and Lions, J. L., Mathematical analysis and numerical methods for science and technology, Vol. 3, Spectral theory and applications (Springer, New York, 1985).Google Scholar
[12]Falconer, K., Techniques in fractal geometry (Wiley, New York, 1997).Google Scholar
[13]Farge, M., Hunt, J.. and Vassilicos, C. (eds.), Wavelets, fractals and Fourier transform: new developments and new applications (Clarendon, New York, 1993).Google Scholar
[14]Frisch, U., Turbulence (Cambridge University Press, London, 1995).CrossRefGoogle Scholar
[15]Gel'fand, I. M. and Vilenkin, N. Y., Generalized functions, Vol. 4 (Academic Press, New York, 1964).Google Scholar
[16]Innacone, P. M. and Khokha, M. (eds.), Fractal geometry in biological systems (CRC Press, 1996).Google Scholar
[17]Kailath, T. A., ‘A view of three decades of linear filtering theory’, IEEE Trans. Inform. Theory IT-20 (1974), 145181.CrossRefGoogle Scholar
[18]Mandelbrot, B. B. and Van Ness, J. W., ‘Fractional Brownian motion, fractional noises and applications’, SIAM Review 10 (1968), 422437.CrossRefGoogle Scholar
[19]Peters, E., Fractal market analysis (Wiley, New York, 1994).Google Scholar
[20]Ramm, A. G., Theory and applications of some new classes of integral equations (Springer, New York, 1980).CrossRefGoogle Scholar
[21]Ramm, A. G., Random fields estimation theory (Longman, Essex, 1990).CrossRefGoogle Scholar
[22]Rozanov, Y. A., Markov random fields (Springer, New York, 1982).CrossRefGoogle Scholar
[23] M. D. Ruiz-Medina, J. M. Angulo and Anh, V. V., ‘Fractional generalised random fields’, submitted.Google Scholar
[24]Schwartz, L., Théorie des Distributions (Hermann, Paris, 1966).Google Scholar
[25]Stein, E. M., Singular integrals and differential properties of functions (Princeton University Press, New Jersey, 1970).Google Scholar
[26]Triebel, H., Interpolation theory, function spaces, differential operators (North-Holland, New York, 1978).Google Scholar