Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T09:25:55.991Z Has data issue: false hasContentIssue false

On special radicals, supernilpotent radicals and weakly homomorphically closed classes

Published online by Cambridge University Press:  09 April 2009

Ju. M. Rjabuhin
Affiliation:
CCCP 27708, Кишинёв, ул. Академическая 5.
R. Wiegandt
Affiliation:
Mathematical Institute, Hungarian Academy of Sciences, Reáltanoda u. 13-15., H-1053 Budapest
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that a regular essentially closed and weakly homomorphically closed proper subclass of rings consists of semiprime rings. A regular class M defines a supernilpotent upper radical if and only if M consists of semiprime rings and the essential cover Mk of M is contained in the semisimple class S U M. A regular essentially closed class M containing all semisimple prime rings, defines a special upper radical if and only if M satisfies condition (S): every M-ring is a subdirect sum of prime M-rings. Thus we obtained a characterization of semisimple classes of special radicals; a subclas S of rings is the semisimple class of a special radical if and only if S is regular, subdirectly closed, essentially closed, and satisfies condition (S). The results are valid for alternative rings too.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

Anderson, T. and Wiegandt, R. (1979), ‘Weakly homomorphically closed semisimple classes’, Acta Math. Acad. Sci. Hungar. 34, 329336.CrossRefGoogle Scholar
Anderson, T. and Wiegandt, R. (Preprint a), ‘Semisimple classes of alternative rings’, Proc. Edinburgh Math. Soc.Google Scholar
Anderson, T. and Wiegandt, R. (Preprint b), ‘On essentially closed classes of rings’, Ann. Univ. Sci. Budapest, Eötvös Sect. Math.Google Scholar
Андрунакевич, В. А. (1958), PaРаднкады ассочиативных колец, I., May;атем. C6., 44 179212.Google Scholar
, B. A.В. А. Андрунакевич-Ю. М. Рябухин (1979), Радикалы алгебр и структурная теория, Москва, Наука.Google Scholar
Armendariz, E. P. (1968), ‘Closure properties in radical theory’, Pacific J. Math. 26, 17.CrossRefGoogle Scholar
Heyman, G. A. P. and Roos, C. (1977), ‘Essential extensions in radical theory for rings’, J. Austral. Math. Soc. Ser. A. 23, 340347.CrossRefGoogle Scholar
Le Roux, H. J., Heyman, G. A. P. and Jenkins, T. L. (Preprint), ‘Essentially closed classes of rings and upper radicals’, Acta Math. Acad. Sci. Hunger.Google Scholar
Leavitt, W. G. (1970), ‘Radical and semisimple classes with specified properties’, Proc. Amer. Math. Soc. 24, 680687.CrossRefGoogle Scholar
Leavitt, W. G. and Watters, J. (1976), ‘Special Closure, M-radicals, and relative complementsActa Math. Acad. Sci. Hunger. 28, 5567.CrossRefGoogle Scholar
van Leeuwen, L. C. A., Roos, C. and Wiegandt, r. (1977), ‘Characterizations of semisimple classes’, J. Austral. Math. Soc. Ser. A. 23, 172182.CrossRefGoogle Scholar
Рядухин, Ю. М. (1965), О наднилвпотентных и спциалвных, Исслед, по Алгiecy;дре и Матем. Аналнзу, Акад. Наук Мплдав, ССР, Кишинёв, 6572.Google Scholar
Sands, A. D. (1976), ‘Strong upper radicals’, Quart. J. Math. oxford Ser. 27, 2124.CrossRefGoogle Scholar
Sands, A. D. (Preprint), ‘A characterization of semisimple classes’, Proc. Edinburgh Math. Soc.Google Scholar
Slater, M. (1968), ‘Ideals in semiprime alternative rings’, J. Algebra 8, 6067.CrossRefGoogle Scholar
Szász, F. (1976), Radikale der Ringe (Akadémiai Kiakó, Budapest).Google Scholar
Watters, J. F. (Preprint), ‘Essential cover and closure’, An. Unio. Sci. Budapest. Eötvös Sect. Math.Google Scholar