Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T03:19:58.050Z Has data issue: false hasContentIssue false

Exploitation of micro refuges and epibiosis: survival strategies of a calcareous sponge

Published online by Cambridge University Press:  27 October 2016

Bárbara Ribeiro
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho 373, CEP 21941-902, Rio de Janeiro, RJ, Brasil
André Padua
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho 373, CEP 21941-902, Rio de Janeiro, RJ, Brasil
Paulo Cesar Paiva
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho 373, CEP 21941-902, Rio de Janeiro, RJ, Brasil
Márcio Reis Custódio
Affiliation:
Departamento de Fisiologia, Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, Travessa 14, 321, CEP 05508-900, São Paulo, SP, Brasil
Michelle Klautau*
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho 373, CEP 21941-902, Rio de Janeiro, RJ, Brasil
*
Correspondence should be addressed to: M. Klautau Universidade Federal do Rio de Janeiro, Instituto de Biologia, Avenida Carlos Chagas Filho 373, CEP 21941-902, Rio de Janeiro, RJ, Brasil email: mklautau@biologia.ufrj.br

Abstract

Sponges interact in various ways with a wide variety of organisms in benthic communities and ecological interactions may influence the distribution, abundance and diversity of these organisms in different sites. Although several studies have already been developed for Demospongiae, knowledge of ecological interactions in the class Calcarea is lacking. Some calcareous sponges are considered weak competitors for space and to have developed strategies to survive in highly dynamic environments, such as exploitation of micro refuges and epibiosis. We aimed to investigate the influence of intra- and interspecific interactions in the abundance, growth and lifespan of the calcareous sponge Clathrina aurea in south-eastern Brazil. Two peaks of abundance and area coverage were observed during the studied year, probably associated with reproductive effort. We found no evidence of intra- or interspecific competition between the sponge and the benthic community. Clathrina aurea was found using parts of other organisms as substrate (epibiosis), such as algae, demosponges and corals. It was seen that the interaction of the sponge with coral polyps positively affects the lifespan of sponge individuals and the interstices of corals probably promote a micro refuge for C. aurea against competitors for space and predators.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.Google Scholar
Batista, D., Muricy, G., Andréa, B.R. and Villaça, R.C. (2012) High intraspecific variation in the diet of the French angelfish Pomacanthus paru in the south-western Atlantic. Brazilian Journal of Oceanography 60, 449454.Google Scholar
Bell, J.J. (2008) The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79, 341353.CrossRefGoogle Scholar
Bell, J.J. and Barnes, D.K. (2003) The importance of competitor identity, morphology and ranking methodology to outcomes in interference competition between sponges. Marine Biology 143, 415426.CrossRefGoogle Scholar
Burns, D.O. and Bingham, B.L. (2002) Epibiotic sponges on the scallops Chlamys hastata and Chlamys rubida: increased survival in a high-sediment environment. Journal of the Marine Biological Association of the United Kingdom 82, 961966.Google Scholar
Cairns, S.D. (2000) A revision of the shallow-water azooxanthellate Scleractinia of the western Atlantic. Studies of the Natural History of the Caribbean Region 75, 1231.Google Scholar
Cairns, S.D., Jaap, W.C. and Lang, J.C. (2009) Scleractinia (Cnidaria) of the Gulf of Mexico. In Felder, D.L. and Camp, D.K. (eds) Gulf of Mexico–origins, waters and biota. Biodiversity. College Station, TX: Texas A&M University Press, 333347 pp.Google Scholar
Cavalcanti, F.F., Skinner, L.F. and Klautau, M. (2013) Population dynamics of cryptogenic calcarean sponges (Porifera, Calcarea) in Southeastern Brazil. Marine Ecology 34, 280288.Google Scholar
Correia, M.D. (2010) Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. Journal of the Marine Biological Association of the United Kingdom 91, 659668.Google Scholar
Dayton, P.K. (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecological Monographs 41, 351389.Google Scholar
Dulvy, N.K., Sadovy, Y. and Reynolds, J.D. (2003) Extinction vulnerability in marine populations. Fish and Fisheries 4, 2564.Google Scholar
Engel, S. and Pawlik, J.R. (2005) Interactions among Florida sponges. I. Reef habitats. Marine Ecology Progress Series 303, 133144.Google Scholar
Ereskovsky, A.V. (2000) Reproduction cycles and strategies of the cold-water sponges Halisarca dujardini (Demospongiae, Halisarcida), Myxilla incrustans and Iophon piceus (Demospongiae, Poecilosclerida) from the White Sea. The Biological Bulletin 198, 7787.CrossRefGoogle ScholarPubMed
Fishelson, L. (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera). Zoomorphology 98, 8999.Google Scholar
Frith, D.W. (1976) Animals associated with sponges at North Hayling, Hampshire. Zoological Journal of the Linnean Society 58, 353362.Google Scholar
Fromont, J., Huggett, M.J., Lengger, S.K., Grice, K. and Schönberg, C.H. (2015) Characterization of Leucetta prolifera, a calcarean cyanosponge from south-western Australia, and its symbionts. Journal of the Marine Biological Association of the United Kingdom 96, 541552.Google Scholar
Gaino, E., Bavestrello, G., Cerrano, C. and Sàra, M. (1996) Survival of the calcareous sponge Clathrina cerebrum (Haeckel, 1872) on a vertical cliff during the summer crisis. Italian Journal of Zoology 63, 4146.CrossRefGoogle Scholar
Grischenko, A.V., Dick, M.H. and Mawatari, S.F. (2007) Diversity and taxonomy of intertidal Bryozoa (Cheilostomata) at Akkeshi Bay, Hokkaido, Japan. Journal of Natural History 41, 10471161.Google Scholar
Hirose, E., Adachi, R. and Kuze, K. (2006) Sexual reproduction of the Prochloron-bearing ascidians, Trididemnum cyclops and Lissoclinum bistratum, in subtropical waters: seasonality and vertical transmission of photosymbionts. Journal of the Marine Biological Association of the United Kingdom 86, 175179.Google Scholar
Hirose, E., Kojima, A., Nogami, J. and Teruya, K. (2007) Seasonality of sexual reproduction in three photosymbiotic Trididemnum species (Didemnidae: Ascidiacea: Tunicata) in a subtropical sea grass bed. Journal of the Marine Biological Association of the United Kingdom 87, 979982.Google Scholar
Johnson, M.F. (1978) Studies on the reproductive cycles of the calcareous sponges Clathrina coriacea and C. blanca. Marine Biology 50, 7379.Google Scholar
Johnson, M.F. (1979) Recruitment, growth, mortality and seasonal variations in the calcareous sponges Clathrina coriacea (Montagu) and C. blanca (Miklucho-Maclay) from Santa Catalina Island, California. In Lévi, C. and Boury-Esnault, N. (eds) Biologie des Spongiaires. Paris: Colloque International du CNRS, pp. 325334.Google Scholar
Johnson, M.F. (1980) Habitats and habitat preferences of the calcareous sponges Clathrina coriacea (Montagu) and Clathrina blanca (Miklucho-Maclay) from Santa Catalina Island, California. Wasmann Journal of Biology 38, 19.Google Scholar
Kamil, B. (2016) MuMIn: Multi-Model Inference. R package version, 1.15.6, http://CRAN.R-project.org/package=MuMIn.Google Scholar
Klautau, M. and Borojevic, R. (2001) Sponges of the genus Clathrina Gray, 1867 from Arraial do Cabo, Brazil. Zoosystema-Paris 23, 395410.Google Scholar
Kleinbaum, D.G. and Klein, M. (2012) Kaplan–Meier survival curves and the log-rank test. In Gail M., Krickeberg K., Samet J.M., Tsiatis A. and Wong W. (eds) Survival analysis: a self-learning text, Third Edition. New York, NY: Springer, pp. 5596.CrossRefGoogle Scholar
Lanna, E. and Klautau, M. (2016) Some aspects of the oogenesis of three species of clathrinid sponges (Calcarea, Porifera). Journal of the Marine Biological Association of the United Kingdom 96, 529539.Google Scholar
Lanna, E., Monteiro, L.C. and Klautau, M. (2007) Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). Porifera Research – Biodiversity, Innovation and Sustainability. Museu Nacional, Rio de Janeiro. Série Livros 28, 413418.Google Scholar
Lehnert, H. and Reitner, J. (1997) Lebensdauer und regeneration bei Ceratoporella nicholsoni (Hickson, 1911) und Spirastrella (Acanthochaetetes) wellsi (Hartman & Goreau, 1975). Geologische Blätter für Nordost-Bayern 47, 265272.Google Scholar
Loh, T.L. and Pawlik, J.R. (2012) Friend or foe? No evidence that association with the sponge Mycale laevis provides a benefit to corals of the genus Montastraea. Marine Ecology Progress Series 465, 111117.Google Scholar
Longo, C., Pontassuglia, C., Corriero, G. and Gaino, E. (2012) Life-cycle traits of Paraleucilla magna, a calcareous sponge invasive in a coastal Mediterranean basin. PloS ONE 7, e42392.Google Scholar
López-Victoria, M., Zea, S. and Weil, E. (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Marine Ecology Progress Series 312, 113121.Google Scholar
Maldonado, M. and Uriz, M.J. (1998) Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Marine Ecology Progress Series 174, 141150.Google Scholar
Maldonado, M. and Uriz, M.J. (1999) An experimental approach to the ecological significance of microhabitat-scale movement in an encrusting sponge. Marine Ecology Progress Series 185, 239255.Google Scholar
McCarthy, A., Osman, R.W. and Whitlatch, R.B. (2007) Effects of temperature on growth rates of colonial ascidians: a comparison of Didemnum sp. to Botryllus schlosseri and Botrylloides violaceus. Journal of Experimental Marine Biology and Ecology 342, 172174.Google Scholar
Mercado-Molina, A.E., Sabat, A.M. and Yoshioka, P.M. (2011) Demography of the demosponge Amphimedon compressa: evaluation of the importance of sexual versus asexual recruitment to its population dynamics. Journal of Experimental Marine Biology and Ecology 407, 355362.CrossRefGoogle Scholar
Monteiro, L.C. and Muricy, G. (2004) Patterns of sponge distribution in Cagarras Archipelago, Rio de Janeiro, Brazil. Journal of the Marine Biological Association of the United Kingdom 84, 681687.Google Scholar
Muricy, G., Lopes, D.A., Hajdu, E., Carvalho, M.S., Moraes, F.C., Klautau, M., Menegola, C. and Pinheiro, U. (2011) Catalogue of Brazilian Porifera. Rio de Janeiro: Museu Nacional.Google Scholar
Orton, J.H. (1914) Preliminary account of a contribution to an evaluation of the sea. Journal of the Marine Biological Association of the United Kingdom 10, 312326.Google Scholar
Orton, J.H. (1920) Sea-temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom 12, 339366.Google Scholar
Padua, A., Lanna, E. and Klautau, M. (2013a) Macrofauna inhabiting the sponge Paraleucilla magna (Porifera: Calcarea) in Rio de Janeiro, Brazil. Journal of the Marine Biological Association of the United Kingdom 93, 889898.Google Scholar
Padua, A., Lanna, E., Zilberberg, C., Paiva, P.C. and Klautau, M. (2013b) Recruitment, habitat selection and larval photoresponse of Paraleucilla magna (Porifera, Calcarea) in Rio de Janeiro, Brazil. Marine Ecology 34, 5661.Google Scholar
Padua, A., Leocorny, P., Custódio, M.R. and Klautau, M. (2016) Fragmentation, fusion, and genetic homogeneity in a calcareous sponge (Porifera, Calcarea). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 325, 294303.Google Scholar
Palumbi, S.R. (1985) Spatial variation in an alga-sponge commensalism and the evolution of ecological interactions. The American Naturalist 126, 267274.Google Scholar
Pawlik, J.R. (1998) Coral reef sponges: do predatory fishes affect their distribution? Limnology and Oceanography 43, 13961399.Google Scholar
Ribeiro, S.M., Omena, E.P. and Muricy, G. (2003) Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil. Estuarine, Coastal and Shelf Science 57, 951959.Google Scholar
Ritzmann, N.F., Rocha, R.M. and Roper, J.J. (2009) Sexual and asexual reproduction in Didemnum rodriguesi (Ascidiacea, Didemnidae). Iheringia. Série Zoologia 99, 106110.Google Scholar
Rützler, K. (1970) Spatial competition among Porifera: solution by epizoism. Oecologia 5, 8595.Google Scholar
Santos, O.C., Pontes, P.V., Santos, J.F., Muricy, G., Giambiagi-deMarval, M. and Laport, M.S. (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Research in Microbiology 161, 604612.Google Scholar
Sarà, M. (1970) Competition and cooperation in sponge populations. Symposium of the Zoological Society of London 25, 273284.Google Scholar
Sarà, M. and Vacelet, J. (1973) Écologie des démosponges. In Brien, P., Lévi, C., Sarà, M., Tuzet, O. & Vacelet, J. (eds) Spongiaires. Traité de Zoologie, anatomie, systématique, biologie, Tome III, Fascicule I (Grassé, P., ed.). Paris: Masson et Cie Éditeurs, pp. 462576.Google Scholar
Sloan, N.A. (1979) Microhabitat and resource utilization in cryptic rocky intertidal echinoderms at Aldabra Atoll, Seychelles. Marine Biology 54, 269279.CrossRefGoogle Scholar
Stachowicz, J.J. (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51, 235246.Google Scholar
Stoecker, D. (1980) Relationships between chemical defense and ecology in benthic ascidians. Marine Ecology Progress Series 3, 257265.Google Scholar
Swain, T.D. and Wulff, J.L. (2007) Diversity and specificity of Caribbean sponge–zoanthid symbioses: a foundation for understanding the adaptive significance of symbioses and generating hypotheses about higher-order systematics. Biological Journal of the Linnean Society 92, 695711.Google Scholar
Therneau, T.M. (2015) A package for survival analysis in S. R package version 2.38. http://CRAN.R-project.org/package=survival.Google Scholar
Turon, X., Tarjuelo, I. and Uriz, M.J. (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology 12, 631639.Google Scholar
Turque, A.S., Batista, D., Silveira, C.B., Cardoso, A.M., Vieira, R.P., Moraes, F.C., Clementino, M.M., Albano, R.M., Paranhos, R., Martins, O.B. and Muricy, G. (2010) Environmental shaping of sponge associated archaeal communities. PLoS ONE 5, e15774.Google Scholar
Van Soest, R.W., Boury-Esnault, N., Vacelet, J., Dohrmann, M., Erpenbeck, D., De Voogd, N. J., Santodomingo, N., Vanhoorne, B., Kelly, M. and Hooper, J.N. (2012) Global diversity of sponges (Porifera). PLoS ONE 7, e35105.Google Scholar
Waddell, B. and Pawlik, J.R. (2000) Defenses of Caribbean sponges against invertebrate predators. II. Assays with sea stars. Marine Ecology Progress Series 195, 133144.Google Scholar
Walters, L.J. and Wethey, D.S. (1996) Settlement and early post-settlement survival of sessile marine invertebrates on topographically complex surfaces: the importance of refuge dimensions and adult morphology. Marine Ecology Progress Series 137, 161171.Google Scholar
Wilkinson, C.R. and Vacelet, J. (1979) Transplantation of marine sponges to different conditions of light and current. Journal of Experimental Marine Biology and Ecology 37, 91104.Google Scholar
Wörheide, G., Gautret, P., Reitner, J., Böhm, F., Joachimski, M.M., Thiel, V., Michaelis, W. and Massault, M. (1997) Basal skeletal formation, role and preservation of intracrystalline organic matrices, and isotopic record in the coralline sponge Astrosclera willeyana Lister, 1900. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 91, 355374.Google Scholar
Wulff, J.L. (1997) Mutualisms among species of coral reef sponges. Ecology 78, 146159.Google Scholar
Wulff, J.L. (2006) Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146166.Google Scholar
Wulff, J.L. (2012) Ecological interactions and the distribution, abundance, and diversity of sponges. Advances in Marine Biology 61, 273344.Google Scholar