Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T16:39:17.249Z Has data issue: false hasContentIssue false

Exploring molecular variation in the cosmopolitan Caprella penantis (Crustacea: Amphipoda): results from RAPD analysis

Published online by Cambridge University Press:  19 October 2009

M. Pilar Cabezas*
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain
José M. Guerra-García
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain
Elena Baeza-Rojano
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain
Susana Redondo-Gómez
Affiliation:
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Sevilla, Spain
M. Enrique Figueroa
Affiliation:
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Sevilla, Spain
Teresa Luque
Affiliation:
Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Sevilla, Spain
J. Carlos García-Gómez
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain
*
Correspondence should be addressed to: M.P. Cabezas, Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain email: pilarcabezas@us.es

Abstract

Eight populations of Caprella penantis, three of Caprella dilatata and two of Caprella andreae, collected from different sites all over the world, were selected for genetic study. Thirteen primers were tested, and the phenogram, based on the similarity coefficient of Nei & Li and the UPGMA method, separated clearly C. dilatata and C. andreae from the populations of C. penantis, supporting the validity of these three species, traditionally considered altogether under the old ‘acutifrons’ complex. Populations of C. penantis (including, at least, forms simulatrix, testudo and lusitanica) from Spain, Portugal, Morocco, Japan and Brazil were clustered together in the RAPD analysis, indicating that, probably, all the specimens of C. penantis could belong to the same species, in spite of morphological variations in the pleura, gills, robustness and presence/absence of proximal projection in adult male gnathopod 2 propodus. The only population which showed genetic differentiation within the C. penantis complex was the form gibbosa from Coquimbo, Chile. Future analysis based on different molecular approaches (mtDNA, 18S rRNA, ISSR) and additional material from other world areas, should be conducted to confirm these results.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashton, G.V., Stevens, M.I., Hart, M.C., Green, D.H., Burrows, M.T., Cook, E.J. and Willis, K.J. (2008) Mitochondrial DNA reveals multiple Northern Hemisphere introductions of Caprella mutica (Crustacea; Amphipoda). Molecular Ecology 15, 12931303.CrossRefGoogle Scholar
Bynum, K.H. (1980) Multivariate assessment of morphological variation in Caprella penantis Leach, 1814 (Amphipoda: Caprellidae). Estuarine, Coastal and Shelf Science 10, 225237.CrossRefGoogle Scholar
Caine, E.A. (1989) Relationship between wave activity and robustness of caprellid amphipods. Journal of Crustacean Biology 9, 425431.CrossRefGoogle Scholar
Costa, F.O., Cunha, M.R., Neuparth, T., Theodorakis, C.W., Costa, M.H. and Shugart, L.R. (2004a) Application of RAPD DNA fingerprinting in taxonomic identification of amphipods: a case-study with Gammarus species (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom 84, 171178.CrossRefGoogle Scholar
Costa, F.O., Neuparth, T., Theodorakis, C.W., Costa, M.H. and Shugart, L.R. (2004b) RAPD analysis of southern populations of Gammarus locusta: comparison with allozyme data and ecological inferences. Marine Ecology Progress Series 277, 197207.CrossRefGoogle Scholar
Culver, D.C., Kane, T.C. and Fong, D.W. (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. London: Harvard University Press.CrossRefGoogle Scholar
Dougherty, E.C. and Steinberg, J. (1953) Notes on the skeleton shrimps (Crustacea: Caprellidae) of California. Proceedings of the Biological Society of Washington 66, 3950.Google Scholar
Guerra-García, J.M. (2001) Habitat use of the Caprellidea (Crustacea: Amphipoda) from Ceuta, North Africa. Ophelia 55, 2738.CrossRefGoogle Scholar
Guerra-García, J.M. and Thiel, M. (2001) The caprellid fauna (Crustacea: Amphipoda: Caprellidea) from Coquimbo, northern-central Chile, with a taxonomic key for species identification. Revista Chilena de Historia Natural 74, 873883.CrossRefGoogle Scholar
Guerra-García, J.M., Redondo-Gómez, S., Espina, A.G., Castillo, J.M., Luque, T., García-Gómez, J.C. and Figueroa, M.E. (2006) Caprella penantis Leach, 1814 and Caprella dilatata Kroyer, 1843 (Crustacea: Amphipoda) from the Strait of Gibraltar: a molecular approach to explore intra- and interspecific variation. Marine Biology Research 2, 100108.CrossRefGoogle Scholar
Hadrys, H., Balick, M. and Schierwater, B. (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 5563.CrossRefGoogle ScholarPubMed
Hirayama, A. and Kikuchi, T. (1980) Caprellid fauna associated with subtidal algal beds along the coast of the Oshika Peninsula, Tohoku District. Publications from the Amakusa Marine Biological Laboratory 5, 171188.Google Scholar
Ito, A., Wada, H. and Aoki, M.N. (2008) Phylogenetic analysis of Caprellid and Corophioid amphipods (Crustacea) based on the 18S rRNA gene, with special emphasis on the phylogenetic position of Phtisicidae. Biological Bulletin. Marine Biological Laboratory, Woods Hole 214, 176183.CrossRefGoogle ScholarPubMed
Krapp-Schickel, T. (1993) Suborder Caprellidea. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Mémoires de l'Institute Oceanographique, Mónaco 113, 773809.Google Scholar
Lamboy, W.F. (1994) Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Methods and Applications 4, 3137.CrossRefGoogle ScholarPubMed
Laubitz, D.R. (1970) Studies on the Caprellidae (Crustacea, Amphipoda) of the American North Pacific. National Museum of Canada, Publications in Biological Oceanography 1, 189.Google Scholar
Laubitz, D.R. (1972) The Caprellidae (Crustacea, Amphipoda) of Atlantic and Arctic Canada. National Museum of Natural Science, Ottawa, Publications in Biological Oceanography 4, 182.Google Scholar
Mayer, P. (1890) Die Caprelliden des Golfes von Neapel und der angrenzenden Meeres Abschinitte. Fauna und Flora des Golfes von Neapel 17, 155.Google Scholar
Mayer, P. (1903) Die Caprelliden der Siboga-Expedition. Siboga Expeditie 34, 1160.Google Scholar
McCain, J.C. (1968) The Caprellidea (Crustacea: Amphipoda) of the western North Atlantic. Bulletin of the United States National Museum 278, 1116.CrossRefGoogle Scholar
Nei, M. and Li, W.H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Science USA 76, 52695273.CrossRefGoogle ScholarPubMed
Pérez, T., Albornoz, J. and Domínguez, A. (1998) An evaluation of RAPD fragment reproducibility and nature. Molecular Ecology 7, 13471357.CrossRefGoogle ScholarPubMed
Rohlf, F.J. (1993) NTSYS-PC numerical taxonomy and multivariate analysis system. Version 1. Setauket, NY: Exeter Publications.Google Scholar
Star, B., Apte, S. and Gardner, J.P.A. (2003) Genetic structuring among populations of the greenshell mussel Perna canaliculus revealed by analysis of randomly amplified polymorphic DNA. Marine Ecology Progress Series 249, 171182.CrossRefGoogle Scholar
Stewart, B.A. (1993) The use of protein electrophoresis for determining species boundaries in amphipods. Crustaceana 65, 265277.CrossRefGoogle Scholar
Tansley, S.A. and Brown, C.R. (2000) RAPD variation in the rare and endangered Leucadendron elimense (Proteaceae): implications for their conservation. Biological Conservation 95, 3948.CrossRefGoogle Scholar
Thiel, M., Guerra-García, J.M., Lancellotti, D. and Vásquez, N. (2003) The distribution of littoral caprellids (Crustacea: Amphipoda: Caprellidea) along the Pacific coast of continental Chile. Revista Chilena de Historia Natural 76, 297312.Google Scholar
Thomas, P.E., Blinn, D.W. and Keim, P. (1997) Genetic and behavioural divergence among desert spring amphipod populations. Freshwater Biology 38, 137143.Google Scholar
Utinomi, H. (1943) The fauna of Akkeshi Bay XIII. Caprellidae. Journal of the Faculty of Science, Hokkaido University 8, 283300.Google Scholar
Vassilenko, S. (1967) Fauna of Caprellidae (Amphipoda) of the Possjet Bay (the Sea of Japan) and some data on their ecology. Explorations of the Fauna of the Seas 5, 196229.Google Scholar
Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.CrossRefGoogle ScholarPubMed
Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA polymoprhisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.CrossRefGoogle Scholar