Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T15:37:39.820Z Has data issue: false hasContentIssue false

Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis Müller

Published online by Cambridge University Press:  11 May 2009

R.P. Harris*
Affiliation:
Biologische Anstalt Helgoland, Litoralstation List, 2282 List/Sylt, West Germany
G.-A. Paffenhöfer*
Affiliation:
Biologische Anstalt Helgoland, Litoralstation List, 2282 List/Sylt, West Germany
*
*Present address: Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PLi 2PB, England.
Present address: Skidaway Institute of Oceanography, P.O. Box 13687, Savannah, Georgia 31406, U.S.A.

Extract

INTRODUCTION

The copepod Temora longicornis Miiller is one of the common zooplankton species in the North Sea and adjacent waters. All developmental stages have been recorded throughout the year off the west coast of Sweden, Temora being considered more common in offshore than inshore waters (Eriksson, 1973). In Loch Striven on the west coast of Scotland it was abundant only in summer, living mainly near the surface (Marshall, 1949). Similarly in the English Channel off Plymouth Temora is present mainly during the summer months (Digby, 1950). T. longicornis was found throughout the year in the Northfrisian Waddensea with temperatures ranging from ca. 1–20 °C (K¨nne, 1952).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. A. & Steele, J. H., 1966. Shipboard experiments on the feeding of Calanus finmarchicus (Gunnerus). In Some Contemporary Studies in Marine Science (ed. H., Barnes), pp. 1935. London: Allen & Unwin.Google Scholar
Berner, A., 1962. Feeding and respiration in the copepod Temora longicornis (Miiller). Journal of the Marine Biological Association of the United Kingdom, 42, 625640.CrossRefGoogle Scholar
Corkett, C. J., 1967. Technique for rearing marine calanoid copepods in laboratory conditions. Nature, London, 216, 5859.CrossRefGoogle Scholar
Corkett, C. J. & Zillioux, E. J., 1975. Studies on the effect of temperature on egg laying of three species of calanoid copepods in the laboratory (Acartia tonsa, Temora longicornis, Pseudocalanus elongatus). Bulletin of the Plankton Society of Japan, 21, 7785.Google Scholar
Cushing, D. H., 1958. The effect of grazing in reducing primary production: a review. Rapports et procès verbaux des réunions. Conseil permanent international pour l' exploration de la mer, 144, 149154.Google Scholar
Digby, P. S. B., 1950. The biology of the small planktonic copepods of Plymouth. Journal of the Marine Biological Association of the United Kingdom, 29, 393438.CrossRefGoogle Scholar
Eriksson, S., 1973. The biology of marine planktonic copepods on the west coast of Sweden. Zoon, 1, 3768.Google Scholar
Frost, B. W., 1975. A threshold feeding behaviour in Calanus pacificus. Limnology and Oceanography, 20, 263266.CrossRefGoogle Scholar
Gaudy, R., 1971. Etude experimentale de la ponte chez trois espèces de copepodes pelagiques (Centropages typicus, Acartia clausii, and Temora stylifera). Marine Biology, 9, 6570.CrossRefGoogle Scholar
Gaudy, R., 1974. Feeding four species of pelagic copepods under experimental conditions. Marine Biology, 25, 125141.CrossRefGoogle Scholar
Gauld, D. T., 1951. The grazing rates of planktonic copepods. Journal of the Marine Biological Association of the United Kingdom, 29, 695706.CrossRefGoogle Scholar
Hargrave, B. T. & Geen, G. H., 1970. Effects of copepod grazing on two natural phytoplankton populations. Journal of the Fisheries Research Board of Canada, 27, 13951403.CrossRefGoogle Scholar
Harris, R. P. & Paffenhöfer, G.-A., 1976. The effect of food concentration on cumulative ingestion and growth efficiency of two small marine copepods. Journal of the Marine Biological Association of the United Kingdom. (In the Press.)CrossRefGoogle Scholar
Künne, C., 1952. Untersuchungen iiber das Grossplankton in der Deutschen Bucht und im Nordsylter Wattenmeer. Helgoldnder wissenschaftliche Meeresuntersuchungen, 4, 154.CrossRefGoogle Scholar
Marshall, S. M., 1949. On the biology of the small copepods in Loch Striven. Journal of the Marine Biological Association of the United Kingdom, 28, 45122.CrossRefGoogle Scholar
Marshall, S. M., 1973. Respiration and feeding in copepods. Advances in Marine Biology, 11, 57120.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P., 1966. Respiration and feeding in some small copepods. Journal of the Marine Biological Association of the United Kingdom, 46, 513530.CrossRefGoogle Scholar
Mullin, M. M. & Brooks, E. R., 1970 a. Growth and metabolism of two planktonic marine copepods as influenced by temperature and type of food. In Marine Food Chains (ed. Steele, J. H.), pp. 7495. Edinburgh: Oliver & Boyd.Google Scholar
Mullin, M. M. & Brooks, E. R., 1970 b. The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of the marine copepod Calanus helgolandicus. Limnology and Oceanography, 15, 748755.CrossRefGoogle Scholar
Mullin, M. M., Fuglister, Stewart E. & Fuglister, F. J., 1975. Ingestion by planktonic grazers as a function of concentration of food. Limnology and Oceanography, 20, 259262.CrossRefGoogle Scholar
Mullin, M. M., Sloan, P. R. & Eppley, R. W., 1966. Relationship between carbon content, cell volume and area in phytoplankton. Limnology and Oceanography, 11, 307311.CrossRefGoogle Scholar
Paffenhöfer, G.-A., 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgolānder wissenschaftliche Meeresuntersuchungen, 20, 346—359.CrossRefGoogle Scholar
Paffenhöfer, G.-A., 1971. Grazing and ingestion rates of nauplii, copepodids, and adults of the marine planktonic copepod Calanus helgolandicus. Marine Biology, 11, 286298.CrossRefGoogle Scholar
Paffenhofer, G.-A., 1976. Feeding, growth, and food conversion efficiency of the marine plank-tonic copepod Calanus helgolandicus. Limnology and Oceanography, 21, 3950.CrossRefGoogle Scholar
Paffenhofer, G.-A. & Harris, R. P., 1976. Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus. Journal of the Marine Biological Association of the United Kingdom, 56, 327344.CrossRefGoogle Scholar
Parsons, T. R., Lebrasseur, R. J., Fulton, J. P. & Kennedy, O. D., 1969. Production studies in the Strait of Georgia. Part II. Secondary production under the Frazer River Plume, February to May, 1967. Journal of Experimental Marine Biology and Ecology, 3, 3950.CrossRefGoogle Scholar
Petipa, T. S., 1967. On the life forms of pelagic copepods and the question of the structure of trophic levels. In Structure and Dynamics of Aquatic Communities and Populations, pp. 108119. Kiev: Instituta Biologii yuzhnykh Morei, Akademiya Nauk Ukr.S.S.R.Google Scholar
Petipa, T. S., Pavlova, E. V. & Sorokin, Yu. I., 1971. Radiocarbon studies of the feeding of mass plankton forms in the tropical zone of the Pacific. In Life Activity of Pelagic Communities in the Ocean Tropics (ed. Vinogradov, M. E.), pp. 135155. Akademiya Nauk S.S.S.R.Google Scholar
Razouls, S., 1974. Maturite sexuelle et fecondite chez les femelles de Temora stylifera, copepode pelagique (Copepoda Calanoidea). Archives de zoologie experimentale et generate, 115, 387399.Google Scholar
Steele, J. H., 1974. The Structure of Marine Ecosystems. 128 pp. Oxford: Blackwell.CrossRefGoogle Scholar
Steele, J. H. & Baird, I. E., 1965. The chlorophyll a content of particulate organic matter in the northern North Sea. Limnology and Oceanography, 10, 261267.CrossRefGoogle Scholar
Strickland, J. D. H., 1968. A comparison of profiles of nutrient and chlorophyll concentrations taken from discrete depths and by continuous recording. Limnology and Oceanography, 13, 388391.CrossRefGoogle Scholar
Wangersky, P. J., 1974. Particulate organic carbon: sampling variability. Limnology and Oceanography, 19, 980984.CrossRefGoogle Scholar