Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T11:38:08.591Z Has data issue: false hasContentIssue false

Gut Associated Lymphoid Tissue in the Dogfish Scyliorhinus Canicula: A Light Microscopic Study

Published online by Cambridge University Press:  11 May 2009

S. Hart
Affiliation:
Department of Biological Sciences, Plymouth Polytechnic, Drake Circus, Plymouth PL4 8AA
A. Wrathmell
Affiliation:
Department of Biological Sciences, Plymouth Polytechnic, Drake Circus, Plymouth PL4 8AA
J. E. Harris
Affiliation:
Department of Biological Sciences, Plymouth Polytechnic, Drake Circus, Plymouth PL4 8AA

Extract

The alimentary tract of the common dogfish, Scyliorhinus canicula L. was examined for the presence of gut associated lymphoid tissue (GALT). GALT was present in the buccal cavity, oesophagus, pyloric stomach, intestine containing the spiral valve, rectum and cloaca, but absent from the cardiac stomach. In the intestine containing the spiral valve the highest levels of GALT were recorded. The GALT occupied three tissue niches: as individual leucocytes in the lamina propria as accumulations in the lamina propria and as individual leucocytes in the ephithelium. Four leucocyte types were identified lymphocytes, granular cells, macrophages and plasma cells. The presence of lymphoid tissue at such high levels in the gut suggests it has a potentially important immunological function.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ardavin, C. F., Zapata, A., Garrido, E. & Villena, A., 1982. Ultrastructure of gut-associated lymphoid tissue (GALT) in the amphibian urodele, Pleurodeles walti. Cell and Tissue Research, 224, 663671.Google ScholarPubMed
Ardavin, C. F., Zapata, A., Villena, A. & Solas, M. T., 1982. Gut associated lymphoid tissue (GALT) in the amphibian urodele Pleurodeles walti. Journal of Morphology 173, 3541.CrossRefGoogle Scholar
Brueton, M. J., 1980. Immune mechanisms and the gut. European Journal of Pediatrics, 133, 201205.CrossRefGoogle ScholarPubMed
Bucke, D., 1971. The anatomy and histology of the alimentary tract of the carnivorous fish the pike Esox lucius L. Journal of Fish Biology, 3, 421431.CrossRefGoogle Scholar
Bullock, W. L., 1963. Intestinal histology of some salmonid fishes with particular reference to the histopathology of acanthocephalan infections. Journal of Morphology, 112, 2344.CrossRefGoogle Scholar
Davina, J. H. M., Parmentier, H. K. & Timmermans, L. P. M., 1982. The effect of oral administration of Vibrio bacteria on the intestine of cyprinid fish. Developmental and Comparative Immunology (supplement), 2, 157166.Google Scholar
Davina, J. H. M., Rijkers, G. T., Rombout, J. H. W. M., Timmermans, L. P. M. & Van Muiswinkel, W. B., 1980. Lymphoid and non-lymphoid cells in the intestine of fishes. In Development and Differentiation of Vertebrate Lymphocytes (ed. Horton, J. D.), pp. 129140. Amsterdam: Elsevier Press.Google Scholar
Drezwina, A., 1905. Contribution to l'étude du tissue lymphoide des Ichthyapsides. Archives de zoologie experimentale et generate, 4, 145338.Google Scholar
Ernst, P. B., Befus, A. D. & Bienenstock, J., 1985. Leucocytes in the intestinal epithelium: an unusual immunological compartment. Immunology Today, 6, 5055.CrossRefGoogle ScholarPubMed
Fange, R. & Grove, D., 1979. Digestion. In Physiology of Fishes, vol. 8 (ed. Hoar, W. S. and Randall, D. J.), pp. 161259. London: Academic Press.Google Scholar
Fange, R. & Pulsford, A., 1983. Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus conicula L. Cell and Tissue Research, 230, 337351.CrossRefGoogle Scholar
Ferguson, A., 1977. Intraepithelial lymphocytes of the small intestine. Gut, 18, 921937.CrossRefGoogle ScholarPubMed
Ferguson, A. & Parrot, D. M. V., 1972. The effect of antigen deprivation on thymus dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clinical and Experimental Immunology, 12, 477488.Google ScholarPubMed
Fichtelius, K., Finstad, J. & Good, R. A., 1968. Bursa equivalents of bursaless vertebrates. Laboratory Investigation, 19, 339351.Google Scholar
Goldsteine, S. N., Manickavel, V. & Cohen, N., 1975. Phylogeny of gut-associated lymphoid tissue. American Zoologist, 15, 107118.CrossRefGoogle Scholar
Hale, L. J., 1965. Biological Laboratory Data. London: Methuen.Google Scholar
Hansen, S. J. & Youson, J. H., 1978. Morphology of the epithelium in the alimentary tract of the larval lamprey, Petromyzon marinus L. Journal of Morphology, 155, 193218.CrossRefGoogle ScholarPubMed
Husband, A. J. & Gowans, J. L., 1978. The origin and antigen dependent distribution of IgA-containing cells in the intestine. Journal of Expermental Medicine, 148, 11461160.Google ScholarPubMed
Jacobshagen, E., 1915. Zur Morphologie des Spiraldarms. Anatomischer Anzeiger, 48, 188254.Google Scholar
Kondesa, A., 1956. A phylogenetic survey of haemocytopoietic tissues in submammalian vertebrates. Bulletin of the Yamaguchi Medical School, 4, 135.Google Scholar
Krementz, A. B. & Chapman, S. B. 1975. Ultrastructure of the posterior half of the intestine of the channel catfish, Ictalurus punctatus. Journal of Morphology, 145, 141162.CrossRefGoogle ScholarPubMed
Morrow, W. J. W. & Pulsford, A., 1980. Identification of peripheral blood leucocytes of the dogfish (Scyliorhinus canicula L.) by electron microscopy. Journal of Fish Biology, 17, 461475.CrossRefGoogle Scholar
Ostberg, Y., Fange, R., Mattison, A. & Thomas, N. W., 1975. Light and electron microscopical characterisation of heterophilic granulocytes in the intestinal wall islets parenchyma of the hagfish, Myxine glutinosa (Cyclostomata). Acta zoologica, 57, 89102.CrossRefGoogle Scholar
Parish, N., Wrathmell, A., Hart, S. & Harris, J. E., 1986. The leucocytes of the elasmobranch, Scyliorhinus canicula L. - a morphological study. Journal of Fish Biology, in press.CrossRefGoogle Scholar
Pontius, H. & Ambrosius, H., 1972. Beitrage zur immunobiologie poikelothermer wirbeltiere. IX. Untersuchungen zur zellulaven Grundlage humoraler. Acta biologica et medica germanica, 29, 319327.Google Scholar
Pulsford, A., Fange, R. & Morrow, W. J. W., 1982. Cell types and interactions in the spleen of the dogfish Scyliorlinus canicula L. an electron microscopical study. Journal of Fish Biology, 21, 649662.CrossRefGoogle Scholar
Pulsford, A., Morrow, W. J. W. & Fange, R., 1984. Structural studies on the thymus of the dogfish, Scyliorhinus canicula L. Journal of Fish Biology, 25, 353360.CrossRefGoogle Scholar
Solas, M. T., Leceta, J. & Zapata, A., 1981. Structure of the cloacal lymphoid complex of Mauremy caspica. Developmental and Comparative Immunology, 5, 151156.CrossRefGoogle Scholar
Solas, M. T. & Zapata, A., 1980. Gut associated lymphoid tissue (GALT) in reptiles: intraepithelial cells. Developmental and Comparative Immunology, 4, 8799.CrossRefGoogle ScholarPubMed
Tomonaga, S., Kobayashi, L., Kajii, R. & Awaya, K., 1984. Two populations of immunoglobulinforming cells in the skate, Raja kenojei: their distribution and characterization. Developmental and Comparative Immunology, 8, 803812.CrossRefGoogle ScholarPubMed
Weinberg, S., 1975. Occurrence of lymphoid cells in the intestine of the goldfish. Bijdragen tot de dierkunde, 45, 196204.CrossRefGoogle Scholar
Zapata, A., 1979. Ultrastructure of the gut associated lymphoid tissue (GALT) of Rutilus rutilus. Morphologia normal y patalogica (section A), 3, 2329.Google Scholar
Zapata, A. & Solas, M. T., 1979. Gut associated lymphoid tissue (GALT) in Reptilia: structure of mucosal accumulations. Developmental and Comparative Immunology, 3, 477487.CrossRefGoogle ScholarPubMed