Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T20:31:54.189Z Has data issue: false hasContentIssue false

Seasonal Changes in Dry Weight and Biochemical Composition of the Tissues of Sexually Mature and Immature Iceland Scallops, Chlamys Islandica

Published online by Cambridge University Press:  11 May 2009

J. H. Sundet
Affiliation:
Institute of Fisheries, University of Tromso, N-9000 TromsB, Norway
O. Vahl
Affiliation:
Institute for Marine Biology, University of Bergen, N-5065 Blomsterdalen, Norway

Extract

The Iceland scallop (Chlamys islandica) (O. F. Müller) has its main distribution within the subarctic transitional zone where it is found on gravel or sandy bottoms at depths ranging from 10–100 m and usually in places with strong currents (Ekman, 1953; Wiborg, 1962).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansell, A. D., 1961. Reproduction, growth and mortality of Venus striatula (da Costa) in Kames Bay, Millport. Journal of the Marine Biological Association of the United Kingdom, 41,191215.CrossRefGoogle Scholar
Ansell, A. D., 1974. Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea area. Marine Biology, 25, 8599.CrossRefGoogle Scholar
Båmsted, U., 1974. Biochemical studies on the deep water pelagic community of Korsfjorden, western Norway. Methology and sample design. Sarsia, 56,7186.CrossRefGoogle Scholar
Bradstreet, R. B., 1965. The Kjeldahl Method for Organic Nitrogen. 239 pp. Academic Press.Google Scholar
Broom, M. J. & Mason, J., 1978. Growth and spawning in the pectinid Chlamys opercularis in relation to temperature and phytoplankton concentration. Marine Biology. 47, 277285.CrossRefGoogle Scholar
Browne, R. A. & Russel-Hunter, W. D., 1978. Reproductive effort in molluscs. Oecologia, 37, 2327.CrossRefGoogle ScholarPubMed
Clausen, B., 1975. In situ vektsmålinger hos haneskjell (Chlamys islandica) (O. F. Müller) i Balsfjorden, Troms. Masters Thesis, University of Tromsø.Google Scholar
Comely, C. A., 1974. Seasonal variations in weights and biochemical content of the scallop Pecten maximus L. in the Clyde Sea area. Journal du Conseil, 35, 281285.CrossRefGoogle Scholar
Eilertsen, H. CHR., 1979. Planteplankton, minimumsfaktorer og primcerproduksjon i Bahfjorden, 1977. Masters Thesis, University of Tromsø.Google Scholar
Ekman, S.J 1953. Zoogeography of the Sea. 417 pp. London: Sidgwick and Jackson.Google Scholar
Foster-Smith, R. L., 1975. The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra. Journal of Experimental Marine Biology and Ecology, 17,122.CrossRefGoogle Scholar
Gabbott, P. A., 1975. Storage cycles in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In Proceedings of the Ninth European Marine Biology Symposium, Oban, Scotland, 1974 (ed. H., Barnes), pp. 191211. Aberdeen University Press.Google Scholar
Gabbott, P. A. & Bayne, B. L., 1973. Biochemical effects of temperature and nutritive stress on Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom, 53, 269286.CrossRefGoogle Scholar
Kirby-Smith, W. W. & Barber, R. T., 1974. Suspension-feedings aquaculture systems: effects of phytoplankton concentration and temperature on growth of the bay scallop. Aquaculture, 3, 135145.CrossRefGoogle Scholar
Sastry, A. N. & Blake, N. J., 1971. Regulation of gonad development in the bay scallop Aequipecten irradians Lamarck. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 140, 274283.CrossRefGoogle Scholar
Skreslet, S. & Brun, E., 1969. On the reproduction of Chlamys islandica (O. F. Müller) and its relation to depth and temperature. Astarte, 2,16.Google Scholar
Taylor, A. C. & Venn, T. J., 1979. Seasonal variation in weight and biochemical composition of the tissues of the queen scallop, Chlayms opercularis, from the Clyde Sea area. Journal of the Marine Biological Association of the United Kingdom, 59, 605621.CrossRefGoogle Scholar
Vahl, O., 1978. Seasonal changes in oxygen consumption of the Iceland scallop (Chlamys islandica (O. F. Müller)) from 70°N. Ophelia, 17,143154.CrossRefGoogle Scholar
Vahl, O., 1980. Seasonal variations in seston and in the growth rate of the Iceland scallop, Chlamys islandica (O. F. Müller) from Balsfjord, 70°N. Journal of Experimental Marine Biology and Ecology, 48,195204.CrossRefGoogle Scholar
Vahl, O., 1981. Energy transformations by the Iceland scallop, Chlamys islandica (O. F. Müller) from 70°N. I. The age-specific energy budget and net growth efficiency. Journal of Experi-mental Marine Biology and Ecology, 53, 281296.CrossRefGoogle Scholar
Vassallo, M. T., 1973. Lipid storage and transfer in the scallop Chlamys hericia Gould. Comparative Biochemistry and Physiology, 44 A, 11691175.Google Scholar
Vies, J. Van Der, 1953. Two methods for the determination of glycogen in liver. Journal of Biochemistry, 57,410416.CrossRefGoogle Scholar
Wiborg, K. F., 1962. Some observations on the Iceland scallop Chlamys islandica (Müller) in Norwegian waters. Fiskeridirektoratets skrifter (ser. Havundersokelser), 13 (6), 3853.Google Scholar