Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T21:17:55.992Z Has data issue: false hasContentIssue false

The Biology of Laminaria hyperborea. V. Comparison with early stages of competitors

Published online by Cambridge University Press:  11 May 2009

Joanna M. Kain
Affiliation:
Marine Biological Station, Port Erin, Isle of Man
Mrs N. S. Jones
Affiliation:
Marine Biological Station, Port Erin, Isle of Man

Extract

The responses to light and temperature variations of the gametophytes and early sporophytes of Laminaria hyperborean were compared in culture with those of its main competitors in Britain, namely L. digitata, L. saccharina and Saccorhiza polyschides. Some undeveloped gametophytes of all species are able to survive in the dark for at least 80 days.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. K., 1967. Effects of light and colour on Macrocystis gametophyte development. Kelp Habitat Improvement project, Annual Report 1966–7, California Institute of Technology, pp. 6872.Google Scholar
Bichakd-Breaud, J., 1964. Affinités géographiques et caractères écologiques de quelques algues communes sur les côtes bretonnes. Penn Bed, T. 4, pp. 201–9.Google Scholar
Boney, A. D. & Corner, E. D. S., 1962. The effects of light on the growth of sporelings of the intertidal red alga Plumaria elegans (Bonnem.) Schm. J. mar. biol. Ass. U.K., Vol. 42, pp. 6592.CrossRefGoogle Scholar
Boney, A. D. & Corner, E. D. S., 1963. The effect of light on the growth of sporelings of the red algae Antithamnion plumula and Brongniartella byssoides. J. mar. biol. Ass. U.K., Vol. 43, pp. 319–25.CrossRefGoogle Scholar
Bunt, J. S., 1964. Primary productivity under sea ice in Antarctic waters. II. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarct. Res. Ser., Vol. 1, pp. 2731.Google Scholar
Chapman, V. J., 1948. Seaweed resources along the shores of Great Britain. Econ. Bot., Vol. 2, pp. 363–78.CrossRefGoogle Scholar
Clendenning, K. A. & Sargent, M. C., 1957. Physiology and biochemistry of giant kelp. Univ. Calif. Inst. mar. Resources, IMR Ref. 57–4, pp. 2536.Google Scholar
Dawson, E. Y., 1959. William H. Harvey's report on the marine algae of the United States north Pacific exploring expedition 1853–1856. Pacif. Nat., Vol. 1, No. 5, 44 pp.Google Scholar
Druehl, L. D., 1967. Distribution of two species of Laminaria as related to some environmental factors. J. Phycol., Vol. 3, pp. 103–8.CrossRefGoogle ScholarPubMed
Druehl, L. D., 1968. Taxonomy and distribution of northeast Pacific species of Laminaria. Can. J. Bot., Vol. 46, pp. 539–47.CrossRefGoogle Scholar
Feldmann, J. & Lami, R., 1941. Flore et végétation marines de la côte basque françaises. Bull. Soc. bot. Fr., T. 88, pp. 123–42.CrossRefGoogle Scholar
Fischer-Piette, E., 1963. La distribution des principaux organismes intercotidaux nord-ibériques en 1954–1955. Annls Inst. océanogr., Monaco, T. 40, pp. 165312.Google Scholar
Gayral, P., 1966. Les Algues des côtes francaises. 632 pp. Paris: Doin-Deren et Cie.Google Scholar
Grenager, B., 1955. Kvantitative undersolkelser av tareforekomster i sor-Helgeland 1952 og 1953. Rep. Norzv. Inst. Seaweed Res., No. 7, 70 pp.Google Scholar
Jitts, H. R., Mcallister, C. D., Stephens, K. & Strickland, J. D. H., 1964. The cell division rates of some marine phytoplankters as a function of light and temperature. J. Fish. Res. Bd Can., Vol. 21, pp. 131–57.CrossRefGoogle Scholar
Jorde, I. & Klavestad, N., 1961. On Laminaria cucullata Foslie and Laminaria intermedia Foslie. Sarsia, Vol. 1, pp. 2730.CrossRefGoogle Scholar
Kain, J. M., 1960. Direct observations on some Manx sublittoral algae. J. mar. biol. Ass. U.K., Vol. 39, pp. 609–30.CrossRefGoogle Scholar
Kain, J. M., 1962. Aspects of the biology of Laminaria hyperborea. I. Vertical distribution. J. mar. biol. Ass. U.K., Vol. 42, pp. 377–85.CrossRefGoogle Scholar
Kain, J. M., 1963. Aspects of the biology of Laminaria hyperborea. II. Age, weight and length. J. mar. biol. Ass. U.K., Vol. 43, pp. 129–51.CrossRefGoogle Scholar
Kain, J. M., 1964. Aspects of the biology of Laminaria hyperborea. III. Survival and growth of gametophytes. J. mar. biol. Ass. U.K., Vol. 44, pp. 415–33.CrossRefGoogle Scholar
Kain, J. M., 1965. Aspects of the biology of Laminaria hyperborea. IV. Growth of early sporophytes. J. mar. biol. Ass. U.K., Vol. 45, pp. 129–43.CrossRefGoogle Scholar
Kain, J. M., 1966. The role of light in the ecology of Laminaria hyperborea. In Light as an Ecological Factor, ed. R., Bainbridge, Evans, G. C. and Rackham, O., pp. 319334. Oxford: Blackwell.Google Scholar
Kang, J. W., (1966). On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll., Vol. 7, 125 pp.Google Scholar
Kjellman, F. R., 1883. The algae of the Arctic Sea. K. Svenska Vetens-Akad. Handl., Bd. 20, No. 5, 350 pp.Google Scholar
Lund, S., 1959. The marine algae of east Greenland. Meddr Gronland, Bd. 156, No. 1, 247 pp.Google Scholar
Neushul, M. & Haxo, F. T., 1963. Studies on the giant kelp, Macrocystis. I. Growth of young plants. Am. J. Bot. Vol. 50, 349–53.CrossRefGoogle Scholar
Norton, T. A. & Burrows, E. M. 1969 a. Studies on marine algae of the British Isles. Saccorhiza polyschides (Lightf.) Batt. Br. phycol. Bull., Vol. 4.Google Scholar
Norton, T. A. & Burrows, E. M., 1969 b. The environmental control of the seasonal behaviour of Saccorhiza polyschides (Lightf.) Batt. Int. Seaweed Symp. 6. Santiago de Compostela.Google Scholar
Parke, M., 1948. Studies on British Laminariaceae. I. Growth in Laminaria saccharina. J. mar. biol. Ass. U.K., Vol. 27, pp. 651709.CrossRefGoogle Scholar
Sauvageau, C., 1918. Recherches sur les laminaires des côtes de France. Mém. Acad. Sci. Inst. Fr., T. 56, 233 pp.Google Scholar
Seoane-Camba, J., 1966. Las laminarias de España y su distribution. Publnes téc. Junta Estud. Pesca, T. 5, pp. 425–36.Google Scholar
Sorokin, C. & Krauss, R. W., 1958. The effects of light intensity on growth rates of green algae. Pl. Physiol., Lancaster, Vol. 33, pp. 109–13.CrossRefGoogle ScholarPubMed
Sundene, O., 1962. The implications of transplant and culture experiments on the growth and distribution of Alaria esculenta. Nytt Mag. Bot., Vol. 9, pp. 155–74.Google Scholar
Sundene, O., 1964. Experimental ecology of large brown algae. Int. bot. Congr. 10. Edinburgh 1964, p. 280.Google Scholar
Svendsen, P., 1959. The algal vegetation of Spitzbergen. Norsk Polarinstitutt Skrifter, Nr. 116, 49 pp.Google Scholar
Svendsen, P., 1962. Some observations on Saccorhiza polyschides (Lightf.) Batt. (Phaeophyceae). Sarsia, Vol. 7, pp. 1113.CrossRefGoogle Scholar
Taylor, W. R., 1957. Marine Algae of the Northeastern Coast of North America. 509 pp. Ann Arbor: University of Michigan Press.Google Scholar
Thomas, W. H., 1966. Effects of temperature and illuminance on cell division rates of three species of tropical oceanic phytoplankton. J. Phycol., Vol. 2, pp. 1722.CrossRefGoogle ScholarPubMed
Vozzhinskaja, V. B., 1965. Algae marinae litoris occidentalis peninsulae Kamczatka (in Russian). Novoste Sestymateke Nesshech Rastynee, 1965, pp. 73–8.CrossRefGoogle Scholar
Wilce, R. T., 1965. Studies in the genus Laminaria. III. A revision of the north Atlantic species of the Simplices section of Laminaria. Bot. Gothoburg., Vol. 3, pp. 247–56.Google Scholar
Zaneveld, J. S., 1966. The occurrence of benthic marine algae under shore fast-ice in the western Ross Sea, Antarctica. Int. Seaweed Symp. 5, Halifax, pp. 217–31.CrossRefGoogle Scholar
Zenkevitch, L., 1963. Biology of the Seas of the U.S.S.R. 955 pp. London: Allen and Unwin.CrossRefGoogle Scholar