Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T12:56:23.075Z Has data issue: false hasContentIssue false

Chemistry of Calcified Portions of Nautilus Pompilius

Published online by Cambridge University Press:  11 May 2009

R. E. Crick
Affiliation:
Department of Geology, University of Texasat Arlington, Arlington, TX 76019
B. Burkart
Affiliation:
Department of Geology, University of Texasat Arlington, Arlington, TX 76019
J. A. Chamberlain
Affiliation:
Department of Geology, Brooklyn College of the CityUniversity of New York, Brooklyn, NY 11210 and Osborn Laboratories of Marine Science, New York Aquarium, New York Zoological Society, Brooklyn, NY 11224
K. O. Mann
Affiliation:
Department of Geology, University of Texasat Arlington, Arlington, TX 76019

Extract

The Sr, Mg, and Ca chemistry and mineralogy of the shell, beaks, and inorganic compounds of the renal appendages of Nautilus pompilius Linné 1758 reveal a complex physiochemical system of biomineralization. The chemistry of the shell and septal aragonite is similar, and establish that N. pompilius discriminates against the concentration of Sr and Mg in sea water by 78% and more than 99% respectively. Beaks consist of high-Mg calcite (4.4% MgCO3). Renal appendages contain either aggregates of crystals (uroliths) of Mg-oxalate dihydrate with nuclei of hydroxyapatite or disassociated particles of hydroxyapatite or both. There is no evidence that uroliths or hydroxyapatite particles serve as temporary reservoirs of Ca during calcification of septa.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bates, R. L. & Jackson, J. A. (ed.), 1980. Glossary of Geology. 749 pp. Falls Church: American Geological Institute.Google Scholar
Brewer, P. G., 1975. Minor Elements In Sea Water. In Chemical Oceanography, vol. 1 (ed. Riley, J. P. and Skirrow, G.), pp. 139147. London: Academic Press.Google Scholar
Cochran, J. S., Rye, D. M. & Landman, N. H., 1981. Growth rate and habitat of Nautilus pompilius inferred from radioactive and stable isotope studies. Paleobiology, 7, 469480.CrossRefGoogle Scholar
Crenshaw, M. A., 1972. The inorganic composition of molluscan extrapallial fluid. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 143, 506512.CrossRefGoogle Scholar
Crenshaw, M. A., 1982. Mechanisms of normal biological mineralization of calcium carbonates. In Biological Mineralization and Demineralization (ed. Nancollas, G. H.), pp. 243257. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Crick, R. E. & Ottensman, V. M., 1983. Sr, Mg, Ca, and Mn chemistry of skeletal components of a Pennsylvanian and recent nautiloid. Chemical Geology, 39, 147163.CrossRefGoogle Scholar
Greenwald, L. & Ward, P., 1982. On the source of cameral liquid in the chambered Nautilus. Veliger, 25, 169170.Google Scholar
Kahn, P. G. K. & Pompea, S. M., 1978. Nautiloid growth rhythms and dynamical evolution of the earth-moon system. Nature, London, 275, 606611.CrossRefGoogle Scholar
Keferstein, W., 1865. In Klassen und Ordnungen der Weichthiere (Malacozoa), vol. 3(2) (ed. Bronn, H. B.), p. 1391. Heidelberg: C. F. Wintersche Verlagshandlung.Google Scholar
Kinsman, D. J. J., 1969. Interpretation of Sr2 + concentrations in carbonate minerals and rocks. Journal of Sedimentary Petrology, 39, 486508.Google Scholar
Levy, W., Perrotey, L. T. & Visser, J. W., 1971. Sur les systéms cristallins des oxalates et des chlorooxalates de magncirccircésium. Bulletin. Socièté chimique de France, no. 3, 757761.Google Scholar
Mcconnell, D. & Ward, P., 1978. Nautiloid uroliths composed of phosphatic hydrogel. Science, New York, 199, 208209.CrossRefGoogle ScholarPubMed
Manigault, P., 1939. Recherches sur le calcaire chez les mollusques. Phosphatase et précipitation calcique histochimie du calcium. Annales de I'lnstitut océanographique, 18, 331426.Google Scholar
Mann, K. O., Crick, R. E., Chamberlain, J. A. Jr, & Burkart, B., 1983. Shell formation and other aspects of biomineralization in Nautilus. Abstracts, Geological Society of America Annual Meeting Program, 15, 635.Google Scholar
Martin, A. W., 1975. Physiology of the excretory organs of cephalopods. Fortschritte der Zoologie, 23, 112123.Google Scholar
Martin, A. W., Catala-Stucki, I. & Ward, P. D., 1978. The growth rate and reproductive behavior of Nautilus macromphalus. Neues Jahrbuch fur Geologie und Paldontologie. Abhandlungen, 156, 207225.Google Scholar
Mason, B. & Moore, C. B., 1982. Principles of Geochemistry. 344 pp. New York: John Wiley.Google Scholar
Saunders, W. B. & Ward, P. D., 1979. Nautiloid growth and lunar dynamics, Lethaia, 12, 172.CrossRefGoogle Scholar
Schipp, R. & Martin, A. W., 1981. Cytology of the renal appendages of Nautilus (Cephalopoda, Tetrabranchiata). Cell and Tissue Research, 219, 585596.CrossRefGoogle ScholarPubMed
Ward, P. D. & Chamberlain, J., 1983. Radiographic observation of chamber formation in Nautilus pompilius. Nature, London, 304, 5759.CrossRefGoogle Scholar
Ward, P., Greenwald, L. & Magnier, Y., 1981. The chamber formation cycle in Nautilus macromphalus. Paleobiology, 7, 481493.CrossRefGoogle Scholar
Weast, R. C. (ed.), 1982. CRC Handbook of Chemistry and Physics. 2383 pp. Boca Raton: CRC Press, Inc.Google Scholar
Wilbur, K. M., 1976. Recent studies of invertebrate mineralization, In The Mechanisms of Mineralization in the Invertebrates and Plants (ed. Watabe, N. and Wilbur, K. M.), pp. 79108. Columbia: University of South Carolina Press.Google Scholar