Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T18:20:40.266Z Has data issue: false hasContentIssue false

Comparative foregut functional morphology of three co-occurring mysids (Crustacea: Mysidacea) from south-eastern Tasmania

Published online by Cambridge University Press:  11 May 2009

Ephrime B. Metillo
Affiliation:
Department of Zoology, University of Tasmania, Box 252C, GPO, Hobart, Tasmania 7001, Australia
David A. Ritz*
Affiliation:
Department of Zoology, University of Tasmania, Box 252C, GPO, Hobart, Tasmania 7001, Australia
*
Corresponding author

Abstract

Studies of mysid diets by gut contents analysis have generally revealed a broadly omnivorous feeding habit, but there are also tendencies towards carnivory, herbivory and/or detritivory (e.g. Nath & Pillai, 1973; Siegfried & Kopache, 1980; Mauchline, 1980; Zagursky & Feller, 1985; Wooldridge & Bailey, 1982; Webb & Wooldridge, 1989). Examination of feeding structures is also necessary to support inferences about feeding ecology (e.g. Webb & Wooldridge, 1989). However, there have been few studies relating to the functional morphology of mysid foreguts (Gelderd, 1909; Haffer, 1965; Nath & Pillai, 1973; Mauchline, 1980; Friesen et al., 1986; Webb & Wooldridge, 1989; Storch, 1989). With the exception of the latter two studies, qualitative descriptions and characterization of the different internal foregut structures have been primarily based on light microscopy. These studies may misinterpret the internal arrangement, topography, and three-dimensional orientation of the internal armature of the foregut, mainly due to problems with depth of field (Grice & Lawson, 1971). Oshel & Steele (1988), from SEM observations, briefly described some foregut features of Gnathophausia ingens. In a comparative study, Storch (1989), using the techniques of transmission and scanning electron microscopy, described in detail the different food chambers and channels, cuticular ridges, and ultrastructure of the epithelial and cuticular linings of the mysid foregut. Webb & Wooldridge (1989) noted the strong relationship between mouthparts, foregut morphology, and the feeding habits of two co-occurring mysids.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Calow, P., 1981. Invertebrate biology: a functional approach. London: Croom Helm Ltd.Google Scholar
Felgenhauer, B.E. & Abele, L.G., 1989. Evolution of the foregut in the lower Decapoda. In Functional morphology of feeding and grooming in Crustacea (ed. B.E., Felgenhaueret al.), pp. 205219. Rotterdam: A. A. Balkema.Google Scholar
Fenton, G.E., 1986. Ecology and taxonomy of mysids (Mysidacea: Crustacea). PhD thesis, University of Tasmania, Hobart.Google Scholar
Fenton, G.E., 1992. Population dynamics of Tenagomysis tasmaniae (Fenton), Anisomysis mixta australis (Zimmer), Paramesopodopsis rufa (Fenton) from south-eastern Tasmania (Crustacea: Mysidacea). Hydrobiologia, 246, 173193.CrossRefGoogle Scholar
Fretter, V. & Graham, A., 1976. A functional anatomy of invertebrates. London: Academic Press.Google Scholar
Friesen, J.A., Mann, K.H. & Willison, J.H.M., 1986. Gross anatomy and fine structure of the gut of the marine mysid shrimp Mysis stenolepis Smith. Canadian Journal of Zoology, 64, 431441.CrossRefGoogle Scholar
Fryer, G., 1977. Studies on the functional morphology and ecology of the atyid prawns of Dominica. Philosophical Transactions of the Royal Society of London (B), 277, 57128.Google ScholarPubMed
Gelderd, C., 1909. Research on the digestive system of the Schizopoda. Anatomy, histology, and physiology. La Cellule, 25, 770.Google Scholar
Grice, G.D. & Lawson, T.J., 1971. Use of the scanning electron microscope in morphological studies in copepods. Crustaceana, 21, 111112.CrossRefGoogle Scholar
Haffer, K., 1965. Zur Morphologie der Malacostraca: der Kaumagen der Mysidacea im Vergleich zu dem verschiedener Peracarida und Eucarida. Helgoländer Wissenchaftliche Meeresuntersuchungen, 12, 156206.CrossRefGoogle Scholar
Hassall, M., 1977. The functional morphology of the mouthparts and foregut in the terrestrial isopod Philoscia muscorum (Scopoli, 1763). Crustaceana, 33, 225236.CrossRefGoogle Scholar
Icely, J.D. & Nott, J.A., 1984. On the morphology and fine structure of the alimentary canal of Corophium volutator (Pallas) (Crustacea: Amphipoda). Philosophical Transactions of the Royal Society of London (B), 306, 4978.Google Scholar
Icely, J.D. & Nott, J.A., 1992. Digestion and absorption: digestive system and associated organs. In Microscopic anatomy of invertebrates. Vol. 10. Decapod Crustacea (ed. F.W., Harrison and A.G., Humes), pp. 147201. London: Wiley-Liss.Google Scholar
Jones, D.A., 1968. The functional morphology of the digestive system in the carnivorous intertidal isopod Eurydice. Journal of Zoology, 156, 363376.CrossRefGoogle Scholar
Keith, D.E., 1974. A comparative study of the digestive tracts of Caprella equilibria Say and Cyamus boopis Lütken (Amphipoda, Caprellidea). Crustaceana, 26, 127132.CrossRefGoogle Scholar
Kunze, J. & Anderson, D.T., 1979. Functional morphology of the mouthparts and gastric mill in the hermit crabs Clibanarius taeniatus (Milne Edwards), Clibanarius virescens (Krauss), Paguristes squamosus McCulloch and Dardanus setifer (Milne-Edwards) (Anomura-Paguridae). Australian Journal of Marine and Freshwater Research, 30, 683722.CrossRefGoogle Scholar
Kunze, J.C., 1981. The foregut of malacostracan Crustacea: functional morphology and evolutionary trends. American Zoologist, 21, 968. [Abstract.]Google Scholar
Mauchline, J., 1980. The biology of mysids and euphausiids. Advances in Marine Biology, 18, 1681.Google Scholar
Metillo, E.B. & Ritz, D.A., 1993. Predatory feeding behaviour in Paramesopodopsis rufa Fenton (Crustacea: Mysidacea). Journal of Experimental Marine Biology and Ecology. 170, 127141.CrossRefGoogle Scholar
Murtaugh, P.A., 1984. Variable gut residence time: problems in inferring feeding rate from stomach fullness of a mysid crustacean. Canadian Journal of Fisheries and Aquatic Science, 41, 12871293.CrossRefGoogle Scholar
Nath, C.N. & Pillai, N.K., 1973. The alimentary system of the littoral mysid Gastrosaccus simulans (Van Beneden). Journal of the Marine Biological Association of India, 15, 577586.Google Scholar
Nation, J.L., 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technology, 58, 347351.CrossRefGoogle ScholarPubMed
Nemoto, T., 1977. Food and feeding structures of deep-sea Thysanopoda euphausiids. In Oceanic sound scattering prediction (ed. N.R., Andersen and B.J., Zahuranec), pp. 457480. New York: Plenum Press.Google Scholar
Oshel, P.E. & Steele, D.H., 1988. SEM morphology of the foreguts of gammaridean amphipods compared to Anaspides tasmaniae (Anaspidacea: Anaspididae), Gnathophausia ingens (Mysidacea: Lophogastridae), and Idotea balthica (Isopoda: Idoteidae). Crustaceana, 13, supplement, 209219.Google Scholar
Schoener, T.W., 1974. Resource partitioning in ecological communities. Science, New York, 185, 2739.CrossRefGoogle ScholarPubMed
Sheader, M. & Evans, F., 1975. Feeding and gut structure of Parathemisto gaudichaudi (Guerin) (Amphipoda, Hyperiidea). Journal of the Marine Biological Association of the United Kingdom, 55, 641656.CrossRefGoogle Scholar
Siegfried, C.A. & Kopache, M.E., 1980. Feeding of Neomysis mercedis (Holmes). Biological Bulletin. Marine Biological Laboratory, Woods Hole, 159, 193205.CrossRefGoogle Scholar
Storch, V., 1987. Microscopic anatomy and ultrastructure of the stomach of Porcellio scaber (Crustacea, Isopoda). Zoomorphology, 106, 301311.CrossRefGoogle Scholar
Storch, V., 1989. Scanning and transmission electron microscopic observations on the stomach of three mysid species (Crustacea). Journal of Morphology, 200, 1727.CrossRefGoogle ScholarPubMed
Suh, H.-L., 1990. Morphology of the gastric mill of the genus Thysanopoda (Euphausiacea). Journal of Crustacean Biology, 10, 479486.CrossRefGoogle Scholar
Suh, H.-L. & Nemoto, T., 1988. Morphology of the gastric mill of ten species of euphausiids. Marine Biology, 97, 7985.CrossRefGoogle Scholar
Ullrich, B., Storch, V. & Marschall, H.-P., 1991. Microscopic anatomy, functional morphology, and ultrastructure of the stomach of Euphausia superba Dana (Crustacea, Euphausiacea). Polar Biology, 11, 203211.CrossRefGoogle Scholar
Webb, P. & Wooldridge, T.H., 1989. Diet elucidation: supplementary inferences from mysid feeding appendage morphology. South African Journal of Zoology, 24, 106109.CrossRefGoogle Scholar
Wooldridge, T. & Bailey, C., 1982. Euryhaline zooplankton of the Sundays Estuary and notes on trophic relationships. South African Journal of Zoology, 17, 151163.CrossRefGoogle Scholar
Zagursky, G. & Feller, R.J., 1985. Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis americana. Estuaries, 8, 355362.CrossRefGoogle Scholar