Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-08-01T09:14:22.309Z Has data issue: false hasContentIssue false

The occurrence and seasonal variation of trace metals in the scallops pecten maximus (L.) and chlamys opercularis (L.)

Published online by Cambridge University Press:  11 May 2009

G. W. Bryan
Affiliation:
The Plymouth Laboratory

Extract

A comparison has been made between the concentrations of eleven trace metals in the tissues of two species of scallops, Pecten maximus (L.) and Chlamys opercularis (L.), collected from the same area of the English Channel. Although there was considerable variation between individual animals, the mean concentrations of Ag, Co, Cr, Cu, Mn, Ni, Pb and Zn were higher in the whole body of Chlamys than in Pecten but concentrations of Al, Cd and Fe were lower. In both species, seasonal changes in the concentrations of Co, Cu, Fe, Mn, Ni, Pb and Zn were observed and, in general, the highest values were found in the autumn and winter months. These changes may be related to food supply, since concentrations were generally highest when phytoplankton productivity was low and tended to fall in the spring as productivity increased rapidly to its annual peak. Despite problems arising from individual and seasonal variation, the kidneys and digestive gland of scallops appear to have potential as biological indicators of trace metals.

The results obtained for Pecten and Chlamys are compared with those in the literature for species from the family Pectinidae.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, F. A. F., Butler, E. I. & Boalch, G. T., 1970. Hydrographic and nutrient chemistry surveys in the western English Channel during 1961 and 1962. Journal of the Marine Biological Association of the United Kingdom, 50, 883905.CrossRefGoogle Scholar
Bertrand, G. & Vladesco, R., 1923. Sur la teneur en zinc du corps et de certains organes des invertébrés. Bulletin de la Socieété chimique de Paris, 33, 314–45.Google Scholar
Bertrand, G. & Voronca-Spirt, M., 1930. Recherches sur la presence et al repartition du titane chez les animaux. Annales de l'lnstitut Pasteur de Lille, 45, 102–6.Google Scholar
Boalch, G. T., 1968. Report of the Council. Journal of the Marine Biological Association of the United Kingdom, 48, 846–7.Google Scholar
Boalch, G. T., 1969. Report of the Council. Journal of the Marine Biological Association of the United Kingdom, 49, 1101–2.Google Scholar
Boycott, D. M. & Cameron, G. R., 1930. Manganese in foodstuffs. Lancet, 219, 959.CrossRefGoogle Scholar
Brooks, R. R. & Rumsby, M. G., 1965. Biogeochemistry of trace element uptake by some New Zealand bivalves. Limnology and Oceanography, 10, 521–7.CrossRefGoogle Scholar
Culkin, F. & Riley, J. P., 1958. The occurrence of gallium in marine organisms. Journal of the Marine Biological Association of the United Kingdom, 37, 607–15.CrossRefGoogle Scholar
Dakin, W. J., 1909. Pecten. L.M.B.C. Memoirs on Typical British Marine Plants and Animals, 17.Google Scholar
Dubois, R., 1900. Sur le cuivre normal dans la série animale. Compte rendu des Séances de la Société de Biologie, 52, 392–4.Google Scholar
Foster, P. & Morris, A. W., 1971. The seasonal variation of dissolved ionic and organically associated copper in the Menai Straits. Deep-Sea Research, 18, 231–6.Google Scholar
Fox, H. M. & Ramage, H., 1931. A spectographic analysis of animal tissues. Proceedings of the Royal Society, London, B, 108, 157–73.Google Scholar
Fukai, R., 1968. Distribution of cobalt in marine organisms. Radioactivity in the Sea, 23, 19. Vienna: IAEA.Google Scholar
Fukai, R. & Broquet, D., 1965. Distribution of chromium in marine organisms. Bulletin de I'Institut Océanographique de Monaco, 65, No. 1336, 19. Also in: Radioactivity in the Sea, 16. Vienna: IAEA.Google Scholar
Ghiretti, F., Salvato, B., Carlucci, S. & de Pieri, R., 1972. Manganese in Pinna nobilis. Experentia, 28, 232–3.CrossRefGoogle ScholarPubMed
Howell, J. S., 1959. Histochemical demonstration of copper in copper-fed rats and in hepatolenticular degeneration. Journal of Pathology and Bacteriology, 77, 473–83.CrossRefGoogle ScholarPubMed
Klein, D. H. & Goldberg, E. D., 1970. Mercury in the marine environment. Environmental Science and Technology, 4, 765–8.Google Scholar
Krukenberg, C. F. W., 1879. Mangan ohne nachweisbare Mengen von Eisen in den Concretionen aus dem Bojanusschen Organe von Pinna squamosa. Untersuchungen des Physiologischen Institute in Heidelberg, 2, 287–9.Google Scholar
Lillie, R. D., 1965. Histopathalogic Technic and Practical Histochemistry, 3rd ed., 449–51. New York, Toronto, Sydney, London: McGraw-Hill.Google Scholar
Lindow, C. W., Elvehjem, C. A. & Peterson, W. H., 1929. The copper content of plant and animal foods. Journal of Biological Chemistry, 82, 465–71.CrossRefGoogle Scholar
Loveridge, B. A., Milner, G. W. C., Barnett, G. A., Thomas, A. & Henry, W. M., 1960. The determination of copper, chromium, lead and manganese in sea water. Atomic Energy Research Establishment Chemistry Division Report-AERE-R3323, 38 pp. Harwell: AERE.Google Scholar
Lumby, J. R., 1935. Salinity and temperature of the English Channel. Fishery Investigations, Board (Ministry) of Agriculture and Fisheries, London, Ser. 2, 14, No. 7, 67.Google Scholar
Lunde, G., 1970. Analysis of arsenic and selenium in marine raw materials. Journal of the Science of Food and Agriculture, London, 21, 242–7.CrossRefGoogle ScholarPubMed
Marks, G. W., 1938. The copper content and copper tolerance of some species of mollusks of the Southern California Coast. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 75, 224–37.CrossRefGoogle Scholar
Mason, J., 1958. The breeding of the scallop, Pecten maximus (L.) in Manx Waters. Journal of the Marine Biological Association of the United Kingdom, 37, 653–71.CrossRefGoogle Scholar
Mullin, J. B. & Riley, J. P., 1956. The occurrence of cadmium in sea water and in marine organisms and sediments. Journal of Marine Research, 15, 103–22.Google Scholar
Paulais, R., 1936. Sur la localisation du nickel dans les organes des mollusques lamellibranches. Compte rendu hebdomadaire des séances de I'Academie des Sciences, 203, 685–7.Google Scholar
Potts, W. T. W., 1967. Excretion in the molluscs. Biological Reviews, 42, 141.CrossRefGoogle Scholar
Preston, A. & Jefferies, D. F., 1969. Aquatic aspects in chronic and acute contamination situations. Environmental Contamination by Radioactive Materials, pp. 183211. Vienna: IAEA.Google Scholar
Preston, A., Jefferies, D. F., Dutton, J. W. R., Harvey, B. R. & Steele, A. K., 1972. British Isles coastal waters: The concentrations of selected heavy metals in sea water, suspended matter and biological indicators – a pilot survey. Environmental Pollution, 3, 6982.Google Scholar
Preston, E. M., 1971. The importance of ingestion in chromium-51 accumulation by Crassostrea virginica. Journal of Experimental Marine Biology and Ecology, 6, 4754.CrossRefGoogle Scholar
Riego, A., 1968. Determinatiόn del arsenico en los organismos marinos. Boletin del Instituto espānol de oceanografia, 134, 116.Google Scholar
Riley, J. P. & Chester, R., 1971. Introduction to Marine Chemistry. Academic Press.Google Scholar
Robertson, D. E., 1970. The distribution of cobalt in oceanic waters. Geochimica et cosmochimica Acta, 34, 553–67.CrossRefGoogle Scholar
Romeril, M. G., 1971. The uptake and distribution of65Zn in oysters. Marine Biology, 9, 347–54.CrossRefGoogle Scholar
Schelske, C. L., Smith, W. D. C. & Lewis, J. A., 1966. Annual Report of the Bureau of Commercial Fisheries Radiobiological Laboratory, Beaufort, N.C. 1965. Circular of the Fish and Wild Life Service, Washington, 244.Google Scholar
Schroeder, H. A., Balassa, J. J. & Tipton, I. H., 1963. Abnormal trace metals in man: titanium. Journal of Chronic Diseases, 16, 5569.CrossRefGoogle Scholar
Schroeder, H. A., Balassa, J. J. & Tipton, I. H., 1963. Abnormal trace metals in man – vanadium. Journal of Chronic Diseases, 16, 1047–71.CrossRefGoogle ScholarPubMed
Schroeder, H. A. & Balassa, J. J., 1965. Abnormal trace metals in man: niobium. Journal of Chronic Diseases, 18, 229–41.CrossRefGoogle ScholarPubMed
Schroeder, H. A. & Balassa, J. J., 1966. Abnormal trace metals in man: arsenic. Journal of Chronic Diseases, 19, 85106.CrossRefGoogle ScholarPubMed
Schroeder, H. A. & Balassa, J. J., 1966. Abnormal trace metals in man: zirconium. Journal of Chronic Diseases, 19, 573–86.CrossRefGoogle ScholarPubMed
Schroeder, H. A. & Balassa, J. J., 1967. Abnormal trace metals in man: germanium. Journal of Chronic Diseases, 20, 211–24.CrossRefGoogle ScholarPubMed
Schroeder, H. A., Frost, D. V. & Balassa, J. J., 1970. Essential trace metals in man: selenium. Journal of Chronic Diseases, 23, 227–43.CrossRefGoogle ScholarPubMed
Segar, D. A., Collins, J. D. & Riley, J. P., 1971. The distributions of the major and some minor elements in marine animals. Part ii. Molluscs. Journal of the Marine Biological Association of the United Kingdom, 51, 131–6.CrossRefGoogle Scholar
Turchini, J., 1923. Contribution a l'étude de I'histologie comparée de la cellule rénale. L'excrétion urinaire chez les mollusques. Archives de Morphologie génerale et expérimentale, 18, 3253.Google Scholar
Vinogradov, A. P., 1953. The elementary composition of marine organisms (translated from the Russian), p. 647. New Haven, Connecticut: Yale University. (Sears Foundation for Marine Research, Memoir II).Google Scholar
Wang-Tai-Si, , 1928. Recherches sur le cuivre, le fer, le manganese et le zinc chez les mollusques (Thesis). Paris: Faculty of Sciences, University of Paris.Google Scholar