Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T20:32:35.127Z Has data issue: false hasContentIssue false

Spatial patterns of distribution of meiofaunal and nematode assemblages in the Huvadhoo lagoon (Maldives, Indian Ocean)

Published online by Cambridge University Press:  15 May 2014

F. Semprucci*
Affiliation:
Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy
P. Colantoni
Affiliation:
Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy
C. Sbrocca
Affiliation:
Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy
G. Baldelli
Affiliation:
Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy
M. Balsamo
Affiliation:
Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy
*
Correspondence should be addressed to: F. Semprucci, Dipartimento di Scienze della Terra, della Vita e dell'Ambiente (DiSTeVA), Università di Urbino, loc. Crocicchia, 61029 Urbino, Italy email: federica.semprucci@uniurb.it

Abstract

Huvadhoo Atoll is a little-known and generally uncontaminated atoll of the southern Maldives, although the human pressure is increasing. This study represents the first attempt to characterize the meiofaunal and nematode assemblages of its lagoon both from a taxonomic and functional point of view. The nematode assemblage was made up of a total of 131 genera in 33 families. Desmodoridae, Chromadoridae and Xyalidae represented the richest and most abundant families, followed in terms of abundance by Selachinematidae and Comesomatidae. The nematode richness was overall higher than that reported in the previous studies carried out in the Central part of the archipelago. The diversity patterns revealed higher values than those reported for the back-reefs platforms, so confirming the positive influence of the water depth on the biodiversity of the nematode assemblage. The statistical analysis highlighted a significant taxonomic difference of the assemblages between the stations characterized by fine and medium-coarse sands, respectively, in line with the auto-ecological preferences of the taxa detected. The use of some nematode descriptors for assessing the ecological quality status (EQS) of the lagoon has revealed a slight disturbance in the station close to Viligili, one of the most urbanized islands. However, the summarization of all the descriptors used allows the highlighting of the good EQS of the Huvadhoo lagoon. Thus, the results of this study may be taken as the starting point for the future monitoring of the potential and real impact of the anthropogenic activity on the area over time.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrianov, A.V. (2004) Current problems in marine biodiversity studies. Russian Journal of Marine Biology 30, 116.CrossRefGoogle Scholar
Alongi, D.M. (1986) Population structure and trophic composition of the free-living nematodes inhabiting carbonate sands of Davies Reef, Great Barrier Reef, Australia. Australian Journal of Marine and Freshwater Research 37, 609619.CrossRefGoogle Scholar
Alongi, D.M. and Pichon, M. (1988) Bathyal meiobenthos of the western Coral Sea: distribution and abundance in relation to microbial standing stocks and environmental factors. Deep-Sea Research 35, 491503.CrossRefGoogle Scholar
Armenteros, M., Ruiz-Abierno, A., Fernández-Garcés, R., Pérez-García, J.A., Díaz-Asencio, L., Vincx, M. and Decraemer, W. (2009) Biodiversity patterns of free-living marine nematodes in a tropical bay: Cienfuegos, Caribbean Sea. Estuarine, Coastal and Shelf Science 85, 179189.CrossRefGoogle Scholar
Austen, M.C., Warwick, R.M. and Ryan, K.P. (1993) Astomonema southwardorum sp. nov., a gutless nematode dominant in methane seep area in the North Sea. Journal of the Marine Biological Association of the United Kingdom 73, 627634.CrossRefGoogle Scholar
Barnes, N., Kim, H.G. and Lee, W. (2012) New species of free-living marine Sabatieriinae (Nematoda: Monhysterida: Comesomatidae) from around South Korea. Zootaxa 3368, 1304.CrossRefGoogle Scholar
Bongers, T. (1990) The maturity index: an ecological measure of an environmental disturbance based on nematode species composition. Oecologia 83, 1419.CrossRefGoogle ScholarPubMed
Bongers, T., Alkemade, R. and Yeates, G.W. (1991) Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Marine Ecology Progress Series 76, 135142.CrossRefGoogle Scholar
Boucher, G. (1997) Structure and biodiversity of nematode assemblages in the SW lagoon of New Caledonia. Coral Reefs 16, 177186.CrossRefGoogle Scholar
Boucher, G. and Gourbault, N. (1990) Sublittoral meiofauna and diversity of nematode assemblages off Guadeloupe Islands (French West Indies). Bulletin of Marine Science 47, 448463.Google Scholar
Boucher, G. and Kotta, J. (1996) Composition et diversité de la méiofaune du lagon de ‘Great Astrolabe Reef’ (Fiji). In The great Astrolabe reef Lagoon (Fiji). Océanographie, Notes et Documents 46, 4752.Google Scholar
Boucher, G., Clavier, J., Hily, C. and Gattuso, J.P. (1998) Contribution of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia). Journal of Experimental Marine Biology and Ecology 225, 269283.CrossRefGoogle Scholar
Buddemeier, R.W., Kleypas, J.A. and Aronson, R.B. (2004) Coral reefs and global climate change: potential contributions of climate change to stresses on coral reef ecosystems. Arlington, VA: Pew Center on Global Climate Change.Google Scholar
Clarke, K.R. and Gorley, R.N. (2001) Primer Version 5. Plymouth: Primer-E.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: Primer-E.Google Scholar
Dando, P.R., Austen, M.C., Burke, R.A. Jr, Kendall, M.A., Kennicutt, M.C. II, Judd, A.G., Moore, D.C., O'Hara, S.C.M., Schmaljohann, R. and Southward, A.J. (1991) Ecology of a North Sea pockmark with an active methane seep. Marine Ecology Progress Series 70, 4963.CrossRefGoogle Scholar
Danovaro, R., Tselepides, A., Otegui, A. and Della-Croce, N. (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Progress in Oceanography 46, 367400.CrossRefGoogle Scholar
de Bovée, F., Guidi, L.D. and Soyer, J. (1990) Quantitative distribution of deep-sea meiobenthos in the Northwestern Mediterranean (Gulf of Lions). Continental Shelf Research 10, 11231145.CrossRefGoogle Scholar
De Leonardis, C., Sandulli, R., Vanaverbeke, J., Vincx, M. and De Zio, S. (2008) Meiofauna and nematode diversity in some Mediterranean sub-tidal areas of the Adriatic and Ionian sea. Scientia Marina 72, 513.Google Scholar
Deming, J.W. and Baross, J.A. (1993) The early diagenesis of organic matter: bacterial activity. In Engel, M. and Macko, S. (eds) Organic chemistry (6 topics in geobiology). New York: Plenum Press, pp. 119144.Google Scholar
Deprez, T., Vanden Berghe, E. and Vincx, M. (2004) NeMys: a multidisciplinary biological information system. In Vanden Berghe, E., Brown, M., Costello, M.J., Heip, C., Levitus, S. and Pissierssens, P. (eds) Proceedings of ‘the colour of ocean data’ Symposium, Brussels, 25–27th November 2002, IOC Workshop Report 188, UNESCO, Paris, pp. 57–63.Google Scholar
De Troch, M., Van Gansbeke, D. and Vincx, M. (2006) Resource availability and meiofauna in sediment of tropical seagrass beds: local versus global trends. Marine Environmental Research 61, 5973.CrossRefGoogle ScholarPubMed
De Troch, M., Raes, M., Muthumbi, A., Gheerardyn, H. and Vanreusel, A. (2008) Spatial diversity of nematode and copepod genera of the coral degradation zone along the Kenyan coast, including a test for the use of higher-taxon surrogacy. African Journal of Marine Science 30, 2533.CrossRefGoogle Scholar
Folk, R.L. and Ward, W.C. (1957) Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 326.CrossRefGoogle Scholar
Fonseca, G., Muthumbi, A.W. and Vanreusel, A. (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Marine Ecology 28, 446459.CrossRefGoogle Scholar
Freiwald, A. and Wilson, J.B. (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Journal of the History of Biology 13, 3752.CrossRefGoogle Scholar
Gambi, C., Vanreusel, A. and Danovaro, R. (2003) Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep-Sea Research Part I 50, 103117.CrossRefGoogle Scholar
Gheskiere, T., Vincx, M., Urban-Malinga, B., Rossano, C., Scapini, F. and Degraer, S. (2005) Nematodes from wave dominated sandy beaches: diversity, zonation, patterns and testing iso-communities concept. Estuarine, Coastal and Shelf Science 62, 365375.CrossRefGoogle Scholar
Giere, O. (2009) Meiobenthology: the microscopic fauna in aquatic sediments. 2nd edition. Berlin: Springer-Verlag.Google Scholar
Giere, O., Windoffer, R. and Southward, E.C. (1995) The bacterial endosymbiosis of the gutless nematode Astomonema southwardorum: ultrastructural aspects. Journal of the Marine Biological Association of the United Kingdom 75, 153164.CrossRefGoogle Scholar
Gollner, S., Riemer, B., Martínez Arbizu, P., Le Bris, N. and Bright, M. (2010) Diversity of meiofauna from the 9u50N East Pacific Rise across a gradient of hydrothermal fluid emissions. PLoS ONE 5, e12321. doi: 10.1371/journal.pone.0012321.CrossRefGoogle ScholarPubMed
Gooday, A.J. and Turley, C.M. (1990) Responses by benthic organisms to input of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society 331, 119138.Google Scholar
Gourbault, N. and Renaud-Mornant, J. (1990) Micro-meiofaunal community structure and nematode diversity in a lagonal ecosystem (Fangataufa, Eastern Tuamotu Archipelago). Marine Ecology: an Evolutionary Perspective 11, 173189.CrossRefGoogle Scholar
Gourbault, N., Warwick, R.M. and Helléquet, M.N. (1998) Spatial and temporal variability in the composition and structure of meiobenthic assemblages (especially nematodes) in tropical beaches (Guadeloupe, FWI). Cahiers de Biologie Marine 39, 2939.Google Scholar
Grassle, J.F. and Maciolek, N.J. (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist 139, 313341.CrossRefGoogle Scholar
Guilini, K., Levin, L.A. and Vanreusel, A. (2012) Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Progress in Oceanography 96, 7792.CrossRefGoogle Scholar
Guo, Y., Helleouet, M.N. and Boucher, G. (2008) Spatial pattern of meiofauna and diversity of nematode species assemblages in the Uvea lagoon (Loyalty Islands, South Pacific). Journal of the Marine Biological Association of the United Kingdom 88, 931940.CrossRefGoogle Scholar
Heip, C., Vincx, M. and Vranken, G. (1985) The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23, 399489.Google Scholar
Hicks, G.R.F. and Coull, B.C. (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology: an Annual Review 21, 67175.Google Scholar
Hoegh-Guldberg, O. (1999) Climate change, coral bleaching and the future of the world's coral reefs. Marine Freshwater Research 50, 839866.Google Scholar
Lampadariou, N., Tselepides, A. and Hatziyanni, E. (2009) Deep-sea meiofaunal and foraminiferal communities along a gradient of primary productivity in the eastern Mediterranean Sea. Scientia Marina 73, 337345.CrossRefGoogle Scholar
Lambshead, P.J.D. (1993) Recent developments in marine benthic biodiversity research. Oceanìs 19, 524.Google Scholar
Liu, X.S., Zhang, Z.N. and Huang, Y. (2007) Sublittoral meiofauna with particular reference to nematodes in the southern Yellow Sea, China. Estuarine, Coastal and Shelf Science 71, 616628.CrossRefGoogle Scholar
Maria, T.F., Paiva, P., Vanreusel, A. and Esteves, A.M. (2013) The relationship between sandy beach nematodes and environmental characteristics in two Brazilian sandy beaches (Guanabara Bay, Rio de Janeiro). Anais da Academia Brasileira de Ciências 85, 257270.CrossRefGoogle Scholar
Moens, T. and Vincx, M. (1997) Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211227.CrossRefGoogle Scholar
Moens, T., Verbeeck, L. and Vincx, M. (1999) The feeding biology of a predatory and a facultatively predatory marine nematode (Enoploides longispiculosus and Adoncholaimus fuscus). Marine Biology 134, 585593.CrossRefGoogle Scholar
Montiel, A., Quiroga, E. and Gerdes, D. (2011) Diversity and spatial distribution patterns of polychaete assemblages in the Paso Ancho, Straits of Magellan Chile. Continental Shelf Research 31, 304314.CrossRefGoogle Scholar
Moreno, M., Vezzulli, L., Marin, V., Laconi, P., Albertelli, G. and Fabiano, M. (2008) The use of meiofauna diversity as an indicator of pollution in harbours. ICES Journal of Marine Science 65, 14281435.CrossRefGoogle Scholar
Moreno, M., Semprucci, F., Vezzulli, L., Balsamo, M., Fabiano, M. and Albertelli, G. (2011) The use of nematodes in assessing ecological quality status in the Mediterranean coastal ecosystems. Ecological Indicators 11, 328336.CrossRefGoogle Scholar
Muthumbi, A.W., Vanreusel, A., Duineveld, G., Soetaert, K. and Vincx, M. (2004) Nematode community structure along the continental slope off the Kenyan Coast, Western Indian Ocean. International Review of Hydrobiology 89, 188205.CrossRefGoogle Scholar
Muthumbi, A.W., Vanreusel, A. and Vincx, M. (2011) Taxon-related diversity patterns from the continental shelf to the slope: a case study on nematodes from the Western Indian Ocean. Marine Ecology 32, 115.Google Scholar
Muthumbi, A. and Vincx, M. (1996) Nematodes from the Indian Ocean: description of six new and species of the genus Molgolaimus Ditlevseni, 1921. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie 66, 1728.Google Scholar
Netto, S.A., Warwick, R.A. and Attril, M.J. (1999) Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (North-east, Brazil). Estuarine, Coastal and Shelf Science 48, 3950.CrossRefGoogle Scholar
Neumann, A.C. and Macintyre, I.G. (1985) Reef response to sea level rise: keep-up, catch-up or give-up. In Proceedings of the fifteenth International Coral Reef Symposium, Tahiti, 27 May–1 June 1985, vol. 3, pp. 105–110.Google Scholar
Pfannkuche, O. and Thiel, H. (1988) Sample processing. In Higgins, R.P. and Thiel, H. (eds) Introduction to the study of meiofauna. Washington, DC: Smithsonian Instirute, pp. 134145.Google Scholar
Price, A.R.G. and Clark, S. (2000) The Maldives. In Sheppard, C.R.C. (ed.) Seas at the millennium: an environmental evaluation: 2. Regional chapters: The Indian Ocean to the Pacific. Pergamon: Amsterdam. pp. 199219.Google Scholar
Raes, M. and Vanreusel, A. (2006) Microhabitat types determine the composition of nematodes communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Research 53, 18801894.CrossRefGoogle Scholar
Raes, M., De Troch, M., Ndaro, S.G.M., Muthumbi, A., Guilini, K. and Vanreusel, A. (2007) The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 26, 113126.CrossRefGoogle Scholar
Rex, M.A., Etter, R.J., Morris, J.S., Crouse, J., McClain, C.R., Johnson, N.A., Stuart, C.T., Thies, R. and Avery, R. (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series 317, 18.CrossRefGoogle Scholar
Rowe, G.T., Sibuet, M., Deming, J., Khripounoff, A., Tietjen, J., Macko, S. and Theroux, R. (1991) ‘Total’ sediment biomass and preliminary estimates of organic carbon residence time in deep-sea benthos. Marine Ecology Progress Series 79, 99114.CrossRefGoogle Scholar
Schratzberger, M., Bolam, S.G., Whomersley, P., Warr, K. and Rees, H.L. (2004a) Development of a meiobenthic nematode community following the intertidal placement of various types of sediment. Journal of Experimental Marine Biology and Ecology 303, 7996.CrossRefGoogle Scholar
Schratzberger, M., Whomersley, P., Warr, K., Bolam, S.G. and Ress, H.L. (2004b) Colonisation of various types of sediment by estuarine nematodes via lateral infaunal migration: a laboratory study. Marine Biology 145, 6978.CrossRefGoogle Scholar
Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4, 6769.CrossRefGoogle Scholar
Semprucci, F., Boi, P., Manti, A., Covazzi Harriague, A., Rocchi, M., Colantoni, P., Papa, S. and Balsamo, M. (2010a) Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgoland Marine Research 64, 101115.CrossRefGoogle Scholar
Semprucci, F., Colantoni, P., Baldelli, G., Rocchi, M. and Balsamo, M. (2010b) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Marine Ecology 31, 592607.CrossRefGoogle Scholar
Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G., Rocchi, M. and Balsamo, M. (2011) Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). Journal of Marine Systems 87, 208215.CrossRefGoogle Scholar
Semprucci, F., Colantoni, P., Baldelli, G., Sbrocca, C., Rocchi, M. and Balsamo, M. (2013) Meiofauna associated with coral sediments in the Maldivian sub-tidal habitats (Indian Ocean). Marine Biodiversity 43, 189198.CrossRefGoogle Scholar
Sevastou, K., Lampadariou, N., Polymenakou, P.N. and Tselepides, A. (2012) Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems. Biogeosciences Discussions 9, 1753917581.Google Scholar
Shirayama, Y. and Ohta, S. (1990) Meiofauna in a cold-seep community off Hatsushima, Central Japan. Journal of the Oceanographical Society of Japan 46, 118124.CrossRefGoogle Scholar
Smith, S.V. and Kinsey, D.W. (1976) Calcium carbonate production, coral reef growth and sea level changes. Science 194, 937939.CrossRefGoogle Scholar
Sommer, S. and Pfannkuche, O. (2000) Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability in relation to monsoon induced enhanced sedimentation regimes of particulate organic matter. Deep-Sea Research Part II 47, 29572977.CrossRefGoogle Scholar
Soetaert, K. and Heip, C. (1995) Nematode assemblage of deep sea and shelf break sites in the North Atlantic and Mediterranean Sea. Marine Ecology Progress Series 125, 171183.CrossRefGoogle Scholar
Sugiyama, S., Staples, D. and Funge-Smith, S.J. (2004) Status and potential of fisheries and aquaculture in Asia and the Pacific. FAO Regional Office for Asia and the Pacific. RAP Publication 2004/25, 53 pp.Google Scholar
Tiejen, J. (1992) Abundance and biomass of metazoan meiobenthos in the deep-sea. In Rowe, G.T. and Pariente, V. (eds) Deep-sea food chains and global carbon cycle. Dordrecht: Kluwer Academic Publishers, pp. 4562.CrossRefGoogle Scholar
Tietjen, J.H. (1976) Distribution and species diversity of deep-sea nematodes off North Carolina. Deep-Sea Research 23, 755768.Google Scholar
Tietjen, J.H. (1977) Population distribution and structure of the free-living nematodes of Long Island Sound. Marine Biology 43, 123136.CrossRefGoogle Scholar
Vanaverbeke, J., Gheskiere, T., Steyaert, M. and Vincx, M. (2002) Nematode assemblages from sub-tidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. Journal of Sea Research 48, 197207.CrossRefGoogle Scholar
Vanaverbeke, J., Soetaert, K., Heip, C. and Vanreusel, A. (1997) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). Journal of Sea Research 38, 93107.CrossRefGoogle Scholar
Vanreusel, A., Fonseca, G., Danovaro, R., Da Silva, M.C., Esteves, A.M., Ferrero, T., Gad, G., Galtsova, V., Gambi, C., Da Fonsêca Genevois, V., Ingels, J., Ingole, B., Lampadariou, N., Merckx, B., Miljutin, D., Miljutina, M., Muthumbi, A., Netto, S., Portnova, D., Radziejewska, T., Raes, M., Tchesunov, A., Vanaverbeke, J., Van Gaever, S., Venekey, V., Bezerra, T.N., Flint, H., Copley, J., Pape, E., Zeppilli, D., Martinez, P.A. and Galeron, J. (2010) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology 31, 620.CrossRefGoogle Scholar
Vanreusel, A., Van Den Bossche, I. and Thiermann, F. (1997) Free-living marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Marine Ecology Progress Series 157, 207219.CrossRefGoogle Scholar
Vezzulli, L., Moreno, M., Marin, V., Pezzati, E., Bartoli, M. and Fabiano, M. (2008) Organic waste impact of capture-based Atlantic bluefin tuna aquaculture at an exposed site in the Mediterranean Sea. Estuarine, Coastal and Shelf Science 78, 369384.CrossRefGoogle Scholar
Vincx, M., Bett, B.J., Dinet, A., Ferrero, T., Gooday, A.J., Lambshead, P.J.D., Pfannkuche, O., Soltwedel, T. and Vanreusel, A. (1994) Meiobenthos of the Deep Northeast Atlantic. Advances in Marine Biology 30, 188.CrossRefGoogle Scholar
Warwick, R.M. and Gee, J.M. (1984) Community structure of estuarine benthos. Marine Ecology Progress Series 18, 97111.CrossRefGoogle Scholar
Wieser, W. (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Eine ökologisch-morphologische Studie. Arkiv fur Zoologi 4, 439484.Google Scholar