Hostname: page-component-68945f75b7-fzmlz Total loading time: 0 Render date: 2024-08-05T14:17:56.040Z Has data issue: false hasContentIssue false

Vitellogenesis and Formation of the Egg Chain in Spirorbis Borealis [Serpulidae]

Published online by Cambridge University Press:  11 May 2009

P. E. King
Affiliation:
Department of Zoology, University College of Swansea
Julie H. Bailey
Affiliation:
Department of Zoology, University College of Swansea
P. C. Babbage
Affiliation:
Department of Zoology, University College of Swansea

Extract

Vitellogenesis in S. borealis is described. The large protein yolk spheres consist of protein and lipoid. This comes by pinocytosis from outside the oöcyte and from the golgi within the oöcyte. This is discussed in relation to other animal oöcytes. Cortical granules are present at the periphery of the oöcyte and release their contents just before the egg leaves the coelom. When released the eggs have an envelope around them, and evidence is presented which suggests that it is formed from material produced by secretory cells around the exit hole and along the ciliated groove.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E., 1964. Oöcyte differentiation and vitellogenesis in the roach Periplaneta americana. J. Cell Biol., Vol. 20, 131–55.CrossRefGoogle ScholarPubMed
Beams, H. W. & Kessel, R. G., 1962. Intracisternal granules of the endoplasmic reticulum in the crayfish oöcyte. J. Cell Biol., Vol. 13, pp. 158–62.CrossRefGoogle ScholarPubMed
Beams, H. W. & Kessel, R. G., 1963. Electron microscope studies on developing crayfish oöcytes with special reference to the origin of yolk. J. Cell Biol., Vol. 18, pp. 621–49.CrossRefGoogle Scholar
Bergan, P., 1953. On the anatomy and reproductive biology of Spirorbis Daudin. Nytt Mag. Zool., Vol. 1, pp. 126.Google Scholar
Colwin, L. H. & Colwin, A. L., 1961. Changes in the spermatozoon during fertilization in Hydroides hexagonus (Annelida). I. Passage of the acrosomal region through the vitelline membrane. J. biophys. biochem. Cytol., Vol. 10, pp. 231–54.CrossRefGoogle ScholarPubMed
Dalton, A. J., 1961. Golgi apparatus; secretion granules. The Cell, Vol., 2, pp. 603. Ed. J., Brachet and Mirsky, A. E.. New York: Academic Press, Inc.Google Scholar
De Silva, P. H. D. H., 1967. Studies on the biology of spirorbinae (Polychaeta). J. Zool. Lond., Vol. 152, pp. 269719CrossRefGoogle Scholar
De Souza Santos, H., 1966. The ultrastructure of the mucous granules from starfish tube feet. J. Ultrastruct. Res., Vol. 16, pp. 259–69.CrossRefGoogle Scholar
Droller, M. J. & Roth, T. F., 1966. An electron microscope study of yolk formation during oögenesis in Lebistes reticulatus Guppyi J. Cell Biol., Vol. 28, pp. 209–32.CrossRefGoogle ScholarPubMed
Essner, E. & Novikoff, A. B., 1962. Cytological studies on two functional hepatomonas; inter-relations of endoplasmic reticulum Golgi apparatus, and lysosomes. J. Cell Biol., Vol. 15, pp. 289312.CrossRefGoogle Scholar
Frey-Wyssling, A. & Muhlethaler, K., 1965. Ultrastructural Plant Cytology. 373 PP. London: Elsevier.Google Scholar
Garbarini, P., 1933. Rhythme d'emission des larvae chez 5. borealis Daudin. C. R. Soc. Biol., Paris, T. 112, pp. 1204–5.Google Scholar
Garbarini, P., 1936. Rhythmes de croissance des oöcytes et d'incubation des larvae chez S. borealis, Daudin. C. R. Soc. Biol., Paris, T. 122, p. 157–8.Google Scholar
Gee, J. M. & Brinley-Williams, G., 1965. Self and cross fertilization in Spirorbis borealis and 5. pagenstecheri. J. mar. biol. Ass. U.K., Vol. 45, pp. 275–85.CrossRefGoogle Scholar
Korschelt, E. & Heider, K., 1902. Lehrbuch der vergleichenden Entwicklungsgeschichte der wirbellosen Thiere. Allgemeiner Theil I-IV, Capitel: Ei und Eibildung. Jena: Gustav Fischer.CrossRefGoogle Scholar
Lönning, S., 1967. Studies of the ultrastructure of sea urchin eggs and the changes induced at insemination. Sarsia, Vol. 30, pp. 3149.CrossRefGoogle Scholar
Loye, J. F. Zur, 1908. Die Anatomie von Spirorbis borealis USW. Zool. Jb., Abt.f. Anatomie, Bd. 26, pp. 305–54.Google Scholar
Neutra, M. & Leblond, C. P., 1966. Synthesis of the carbohydrate of mucus in the Golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J. Cell Biol., Vol. 30, pp. 119–36.CrossRefGoogle ScholarPubMed
Pearse, A. G. E., 1960. Histochemistry, Theoretical and Applied. London: Churchill.Google Scholar
Potswald, H. E., 1967. Observations on the genital segments of Spirorbis (Polychaeta). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 132, pp. 91107.CrossRefGoogle Scholar
Raven, C. P., 1961. Oögenesis, the Storage of Developmental Information. London: Pergamon Press.Google Scholar
Roth, T. F., & Porter, K. R., 1964. Yolk protein uptake in the oöcyte of the mosquito Aedes aegypti L. J. Cell Biol., Vol. 20, pp. 313–32.CrossRefGoogle ScholarPubMed
Runnström, J., 1966. The vitelline membrane and cortical particles in sea urchin eggs and their function in maturation and fertilization. Advances in Morpho-genesis, Vol. 5, pp. 222308.Google ScholarPubMed
Telfer, W. H., 1961. The route of entry and localisation of blood protein in the oöcytes of saturniid moths. J. biophys. biochem. Cytol., Vol. 9, pp. 747–59.CrossRefGoogle ScholarPubMed