Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T21:56:06.623Z Has data issue: false hasContentIssue false

Forest fragmentation and edge effects on the genetic structure of Clusia sphaerocarpa and C. lechleri (Clusiaceae) in tropical montane forests

Published online by Cambridge University Press:  03 June 2013

Amira Apaza Quevedo*
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Am Kirchtor 1, D-06108 Halle, Germany Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Correo Central, Casilla 10077, La Paz, Bolivia
Matthias Schleuning
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Am Kirchtor 1, D-06108 Halle, Germany Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt (Main), Germany
Isabell Hensen
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Am Kirchtor 1, D-06108 Halle, Germany
Fransisco Saavedra
Affiliation:
Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, Am Kirchtor 1, D-06108 Halle, Germany Biodiversity and Climate Research Centre (BiK-F) and Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt (Main), Germany Herbario Nacional de Bolivia, Universidad Mayor de San Andrés, Correo Central, Casilla 10077, La Paz, Bolivia
Walter Durka
Affiliation:
Helmholtz-Centre for Environmental Research – UFZ, Department Community Ecology (BZF), Theodor-Lieser-Str. 4, 06120 Halle, Germany
*
1Corresponding author. Email: amiraelvia@yahoo.es

Abstract:

Fragmentation of tropical forests influences abiotic and biotic processes that affect the genetic structure of plant populations. In forest fragments, edge effects, i.e. changes of abiotic and biotic factors at forest edges, may be prevalent. In two forest fragments (c. 200 ha at c. 2450 m asl) of tropical montane forest in Bolivia, sympatric populations of the dioecious tree species Clusia sphaerocarpa and C. lechleri were used as case study species to compare genetic diversity and small-scale genetic structure (SGS) between edge and interior habitats. Eight microsatellite markers were employed to genotype 343 individuals including adults, juveniles and seedlings of C. sphaerocarpa and 196 of C. lechleri. Genetic differentiation was found between habitats in both species (ΦRT = 0.071 for C. sphaerocarpa and ΦRT = 0.028 for C. lechleri) and among ages in C. sphaerocarpaRT = 0.016). Overall, SGS was weak but significant with more pronounced SGS in C. lechleri (Sp = 0.0128) than in C. sphaerocarpa (Sp = 0.0073). However, positive spatial genetic autocorrelation extended only up to 10 m. For C. sphaerocarpa, SGS was stronger in seedling and juvenile stages than in adults and in the forest interior than at forest edges. Our results show that edge effects can extend to the genetic level by breaking-up local genetic structures, probably due to increased gene flow and enhanced pollination and seed-dispersal interactions at forest edges.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALDRICH, P. R., HAMRICK, J. L., CHAVARRIAGA, P. & KOCHERT, G. 1998. Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Molecular Ecology 7:933944.CrossRefGoogle ScholarPubMed
BANKS, S. C. & PEAKALL, R. 2012. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Molecular Ecology 21:20922105.CrossRefGoogle ScholarPubMed
BAWA, K. S. 1992. Mating systems, genetic differentiation and speciation in tropical rain forest plants. Biotropica 24:250255.CrossRefGoogle Scholar
BITTRICH, V. & AMARAL, M. C. E. 1996. Flower morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). Kew Bulletin 51:681694.CrossRefGoogle Scholar
CHOO, J., JUENGER, T. E. & SIMPSON, B. B. 2012. Consequences of frugivore-mediated seed dispersal for the spatial and genetic structures of a neotropical palm. Molecular Ecology 21:10191031.CrossRefGoogle ScholarPubMed
DEBOUT, G. D. G., DOUCET, J. L. & HARDY, O. J. 2011. Population history and gene dispersal inferred from spatial genetic structure of a Central African timber tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106:8899.CrossRefGoogle ScholarPubMed
DE ROCA, S. 1993. Guttiferae. Pp. 337351 in Killeen, T. J., Beck, S. G. & Garcia, E. (eds.). Guía de arboles de Bolivia. Herbario Nacional de Bolivia & Missouri Botanical Garden, La Paz.Google Scholar
DEL CASTILLO, R. F., TRUJILLO-ARGUETA, S., SÁNCHEZ-VARGAS, N. & NEWTON, A. C. 2011. Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine. Evolutionary Applications 4:574588.CrossRefGoogle Scholar
DICK, C. W., HARDY, O. J., JONES, F. A. & PETIT, R. J. 2008. Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Tropical Plant Biology 1:2033.CrossRefGoogle Scholar
DOLIGEZ, A., BARIL, C. & JOLY, H. I. 1998. Fine-scale spatial genetic structure with nonuniform distribution of individuals. Genetics 148:905919.CrossRefGoogle ScholarPubMed
DOYLE, J. J. & DOYLE, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:1115.Google Scholar
DYER, R. J. 2007. Powers of discerning: challenges to understanding dispersal processes in natural populations. Molecular Ecology 16:48814882.CrossRefGoogle ScholarPubMed
EZARD, T. H. G. & TRAVIS, J. M. J. 2006. The impact of habitat loss and fragmentation on genetic drift and fixation time. Oikos 114:367375.CrossRefGoogle Scholar
FARWIG, N., BÖHNING-GAESE, K. & BLEHER, B. 2006. Enhanced seed dispersal of Prunus africana in fragmented and disturbed forests? Oecologia 147:238252.CrossRefGoogle ScholarPubMed
FARWIG, N., BRAUN, C. & BÖHNING-GAESE, K. 2008. Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana (Rosaceae). Conservation Genetics 9:317326.CrossRefGoogle Scholar
FENSTER, C. B., VEKEMANS, X. & HARDY, O. J. 2003. Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57:9951007.Google Scholar
GARCÍA, C. & GRIVET, D. 2011. Molecular insights into seed dispersal mutualisms driving plant population recruitment. Acta Oecologica 37:632640.CrossRefGoogle Scholar
GONZALES, E., HAMRICK, J. L., SMOUSE, P. E., TRAPNELL, D. W. & PEAKALL, R. 2010. The impact of landscape disturbance on spatial genetic structure in the guanacaste tree, Enterolobium cyclocarpum (Fabaceae). Journal of Heredity 101:133143.CrossRefGoogle ScholarPubMed
GUSTAFSSON, M. H. G., WINTER, K. & BITTRICH, V. 2007. Diversity, phylogeny and classification of Clusia. Pp. 95116 in Lüttge, U. (ed.). Clusia: a woody neotropical genus of remarkable plasticity and diversity. Springer, Berlin.CrossRefGoogle Scholar
HALE, M. L., SQUIRRELL, J., BORLAND, A. M. & WOLFF, K. 2002. Isolation of polymorphic microsatellite loci in the genus Clusia (Clusiaceae). Molecular Ecology Notes 2:506508.CrossRefGoogle Scholar
HAMRICK, J. 2004. Response of forest trees to global environmental changes. Forest Ecology and Management 197:323335.CrossRefGoogle Scholar
HAMRICK, J. L. 2010. Pollen and seed movement in disturbed tropical landscapes. Pp. 190211 in DeWoody, J. A., Bickham, J. W., Michler, C. H, Nichols, K. M., Rhodes, O. E. & Woeste, K. E. (eds.). Molecular approaches in natural resource conservation and management. Cambridge University Press, New York.CrossRefGoogle Scholar
HAMRICK, J. L. & NASON, J. D. 1996. Consequences of dispersal in plants. Pp. 203236 in Rhodes, O. E., Chesser, R. K. & Smith, M. H. (eds.). Population dynamics in ecological space and time. University of Chicago Press, Chicago.Google Scholar
HAMRICK, J. L. & TRAPNELL, D. W. 2011. Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica 37:641649.CrossRefGoogle Scholar
HAMRICK, J. L., MURAWSKI, D. A. & NASON, J. D. 1993. The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Plant Ecology 107/108:281297.CrossRefGoogle Scholar
HANZAWA, F. M., BEATTIE, A. J. & CULVER, D. C. 1988. Directed dispersal: demographic analysis of an ant–seed mutualism. American Naturalist 131:113.CrossRefGoogle Scholar
HENSEN, I., TEICH, I., HIRSCH, H., VON WEHRDEN, H. & RENINSON, D. 2011. Range-wide genetic structure and diversity of the endemic tree line species Polylepis australis (Rosaceae) in Argentina. American Journal of Botany 11:18251833.CrossRefGoogle Scholar
HENSEN, I., CIERJACKS, A., HIRSCH, H., KESSLER, M., ROMOLEROUX, K., RENISON, D. & WESCHE, K. 2012. Historic and recent fragmentation coupled with altitude affect the genetic population structure of one of the world's highest tropical tree line species. Global Ecology and Biogeography 21:455464.CrossRefGoogle Scholar
HURLBERT, S. H. 1971. The non concept of species diversity: a critique and alternative parameters. Ecology 52:577586.CrossRefGoogle Scholar
KAMBACH, S., GUERRA, F., BECK, S., HENSEN, I. & SCHLEUNING, M. 2013. Human-induced disturbance alters pollinator communities in tropical montane forests. Diversity 5:114.CrossRefGoogle Scholar
KESSLER, M. & BECK, S. G. 2001. Bolivia. Pp. 581622 in Kappelle, M. & Brown, A. D. (eds.). Bosques nublados del neotropico. INBio, Costa Rica.Google Scholar
KETTLE, C. J., HOLLINGSWORTH, P. M., JAFFRÉ, T., MORAN, B. & ENNOS, R. A. 2007. Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Molecular Ecology 16:35813591.CrossRefGoogle Scholar
KETTLE, C. J., HOLLINGSWORTH, P. M., BURSLEM, D. F. R. P., MAYCOCK, C. R., KHOO, E. & GHAZOUL, J. 2011. Determinants of fine-scale spatial genetic structure in three co-occurring rain forest canopy trees in Borneo. Perspectives in Plant Ecology, Evolution and Systematics 13:4756.CrossRefGoogle Scholar
KILLEEN, T. J., SILES, T., SORI, L. & BORREA, L. 2005. Estratificación de vegetación y cambio de uso de suelo en los Yungas y Alto Beni de La Paz. Ecología en Bolivia: Revista del Instituto de Ecología 40: 3269.Google Scholar
KIRIKA, J. M., BLEHER, B., BÖHNING-GAESE, K., CHIRA, R. & FARWIG, N. 2008. Fragmentation and local disturbance of forests reduce frugivore diversity and fruit removal in Ficus thonningii trees. Basic and Applied Ecology 9:663672.CrossRefGoogle Scholar
KLOSS, L., FISCHER, M. & DURKA, W. 2011. Land-use effects on genetic structure of a common grassland herb: a matter of scale. Basic and Applied Ecology 12:440448.CrossRefGoogle Scholar
KRAMER, A. T., ISON, J. L., ASHLEY, M. V. & HOWE, H. F. 2008. The paradox of forest fragmentation. Conservation Biology 22:878885.CrossRefGoogle ScholarPubMed
LAURANCE, W. F., NASCIMENTO, H. E. M., LAURANCE, S. G., ANDRADE, A., EWERS, R. M., HARMS, K. E., LUIZÃO, R. C. C. & RIBEIRO, J. E. 2007. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. Plos ONE 2:e1017.CrossRefGoogle ScholarPubMed
LEHOUCK, V., SPANHOVE, T., VANGESTEL, C., CORDEIRO, N. J. & LENS, L. 2009. Does landscape structure affect resource tracking by avian frugivores in a fragmented afrotropical forest? Ecography 32:789799.CrossRefGoogle Scholar
LOISELLE, B. A., SORK, V. L., NASON, J. & GRAHAM, C. 1995. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American Journal of Botany 82:14201425.CrossRefGoogle Scholar
LOWE, A. J., BOSHIER, D., WARD, M., BACLES, C. F. E. & NAVARRO, C. 2005. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255273.CrossRefGoogle ScholarPubMed
MENKE, S., BÖHNING-GAESE, K. & SCHLEUNING, M. 2012. Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121:15531566.CrossRefGoogle Scholar
MICHALSKI, S. G. & DURKA, W. 2012. Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense. Conservation Genetics 13:581592.CrossRefGoogle Scholar
MURCIA, C. 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution 10:5862.CrossRefGoogle ScholarPubMed
MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., FONSECA, G. A. B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853858.CrossRefGoogle ScholarPubMed
NASON, J. D., ALDRICH, P. R. & HAMRICK, J. L. 1997. Dispersal and the dynamics of genetic structure in fragmented tropical tree populations. Pp. 304320 in Laurance, W. F. & Bierregaard, R. O. (eds.). Tropical forest remnants: ecology, management and conservation of fragmented communities. The University of Chicago Press, Chicago.Google Scholar
NEI, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, 512 pp.CrossRefGoogle Scholar
PASSOS, L. & OLIVEIRA, P. S. 2002. Ants affect the distribution and performance of seedlings of Clusia criuva, a primarily bird-dispersed rain forest tree. Journal of Ecology 90:517528.CrossRefGoogle Scholar
RAMOS, F. N., DE LIMA, P. F., ZUCCHI, M. I., COLOMBO, C. A. & SOLFERINI, V. N. 2010. Genetic structure of tree and shrubby species among anthropogenic edges natural edges and interior of an Atlantic forest fragment. Biochemical Genetics 48:215228.CrossRefGoogle ScholarPubMed
SAUNDERS, D. A., HOBBS, R. J. & MARGULES, C. R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5:1832.CrossRefGoogle Scholar
SHI, M., MICHALSKI, S. G., CHEN, X. Y. & DURKA, W. 2011. Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forest, Castanopsis eyrei. Plos ONE 6:e21302.CrossRefGoogle Scholar
SMOUSE, P. E., PEAKALL, R. & GONZALES, E. 2008. A heterogeneity test for fine-scale genetic structure. Molecular Ecology 17:33893400.CrossRefGoogle ScholarPubMed
VAN GEERT, A., VAN ROSSUM, F. & TRIEST, L. 2008. Genetic diversity in adult and seedling populations of Primula vulgaris in a fragmented agricultural landscape. Conservation Genetics 9:845853.CrossRefGoogle Scholar
VAN ROSSUM, F. & TRIEST, L. 2006. Fine-scale genetic structure of the common Primula elatior (Primulaceae) at an early stage of population fragmentation. American Journal of Botany 93:12811288.CrossRefGoogle ScholarPubMed
VASCONCELOS, H. L. & LUIZÃO, F. J. 2004. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecological Applications 14:884892.CrossRefGoogle Scholar
VEKEMANS, X. & HARDY, O. J. 2004. New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13:921935.CrossRefGoogle ScholarPubMed
WHITE, G. M., BOSHIER, D. H. & POWELL, W. 2002. Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proceedings of the National Academy of Sciences USA 99:20382042.CrossRefGoogle Scholar
YOUNG, A., BOYLE, T. & BROWN, T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11:413418.CrossRefGoogle ScholarPubMed