Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-10T08:13:58.209Z Has data issue: false hasContentIssue false

Effect of Cyclone Aila on estuarine fish assemblages in the Matla River of the Indian Sundarbans

Published online by Cambridge University Press:  01 June 2012

Sudeshna Mukherjee
Affiliation:
Aquatic Bioresource Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata – 700019, India
Atreyee Chaudhuri
Affiliation:
Aquatic Bioresource Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata – 700019, India
Shilpa Sen
Affiliation:
Aquatic Bioresource Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata – 700019, India
Sumit Homechaudhuri*
Affiliation:
Aquatic Bioresource Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata – 700019, India
*
1Corresponding author. Email: sumithomechaudhuri@gmail.com

Abstract:

The present study examined the effect of a catastrophic cyclone (Aila) on ichthyofaunal assemblages in a tidal river of the Sundarban Delta. Sampling in six stations with a gill-net of 20-m length and 1-cm mesh size resulted in the collection of 63 species in a pre-Aila survey. Among them, 16 species were not available in the year after the cyclone. However, 12 new species were added to the assemblages in the post-Aila year during which 59 species were recorded. Analysis of Similarity (ANOSIM) confirmed significant changes in fish assemblages after the cyclone with a corresponding reduction of the species diversity and variation in the seasonal pattern of abundance. Hydrological parameters also differed with a significant surge in nutrient concentrations. Tolerance to low dissolved oxygen seemed to be a determinant factor as evident from the higher abundance of certain fishes viz. Harpadon nehereus, Liza parsia, Pampus argentius, Tenualosa ilisha and Toxotes chatareus during post-Aila year. Despite the recovery of the ichthyofaunal assemblages at the later stage of the study, a strong seasonal variation was persistent. The study therefore suggests that environmental variation in terms of increasing temperature and salinity elicit greater response in an estuarine community than temporary natural disturbances even as severe as cyclones.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AGOSTINHO, A. A. & ZALEWSKI, M. 1995. The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil. Hydrobiologia 303:141148.CrossRefGoogle Scholar
ALMIRÓN, A. E., GARCÍA, M. L., MENNI, R. C., PROTOGINO, L. C. & SOLARI, L. C. 2000. Fish ecology of a seasonal low-land stream in temperate South America. Marine and Freshwater Research 51:265274.CrossRefGoogle Scholar
AMARA, R. & PAUL, C. 2003. Seasonal patterns in the fish and epibenthic crustaceans community of an intertidal zone with particular reference to the population dynamics of plaice and brown shrimp. Estuarine, Coastal and Shelf Science 56:807818.CrossRefGoogle Scholar
APHA 1998. Standard methods for the examination of water and wastewater. (Twentieth edition). American Public Health Association, Washington, DC. 1325 pp.Google Scholar
BEYST, B., HOSTENS, K. & MEES, J. 2001. Factors influencing fish and macrocrustacean communities in the surf zone of sandy beaches in Belgium: temporal variation. Journal of Sea Research 46:281294.CrossRefGoogle Scholar
BLABER, S. J. M., ALBARET, J. J. & CHONG, V. C. 2000. Effects of fishing on the structure and functioning of estuarine and near shore ecosystem. ICES Journal of Marine Science 57:590602.CrossRefGoogle Scholar
BYTHELL, J. C., HILLIS-STARR, Z. M. & RODGERS, C. S. 2000. Local variability but landscape stability in coral reef communities following repeated hurricane impacts. Marine Ecology Progress Series 204:93100.CrossRefGoogle Scholar
CLARK, B. M., BENNETT, B. A. & LAMBERTH, S. J. 1996. Temporal variations in surf zone fish assemblages from False Bay, South Africa. Marine Ecology Progress Series 131:3547.CrossRefGoogle Scholar
CLARKE, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
CONNELL, J. H. & SLATYER, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111:11191140.CrossRefGoogle Scholar
COVICH, A. P., CROWL, T. A., JOHNSON, S. L., VARZA, D. & CERTAIN, D. L. 1991. Post-hurricane Hugo increases in atyid shrimp abundances in a Puerto Rican montane stream. Biotropica 23:448454.CrossRefGoogle Scholar
DAY, F. 1958. The fishes of India. Volumes 1 and 2. William Dawson, London. 778 & 205 pp.Google Scholar
DAY, J. W., HALL, C. A. S., KEMP, W. M. & YÁŃEZ-ARANCIBIA, A. 1989. Estuarine ecology. John Wiley and Sons, New York. 558 pp.Google Scholar
DOLLOFF, C. A., FLEBBE, P. A. & OWEN, M. D. 1994. Fish habitat and fish populations in a southern Appalachian watershed before and after hurricane Hugo. Transactions of the American Fisheries Society 123:668678.2.3.CO;2>CrossRefGoogle Scholar
GALACATOS, K., BARRIGA-SALAZAR, R. & STEWART, D. J. 2004. Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian Amazon. Environmental Biology of Fishes 71:3351.CrossRefGoogle Scholar
GARCIA, A. M., VIEIRA, J. P. & WINEMILLER, K. O. 2001. Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. Journal of Fish Biology 59:12181238.Google Scholar
GIBSON, R. N., ANSELL, A. D. & ROBB, L. 1993. Seasonal and annual variations in abundances and species composition of fish and macrocrustacean communities on a Scottish sandy beach. Marine Ecology Progress Series 98:89105.CrossRefGoogle Scholar
GIBSON, R. N., ROBB, L., BURROWS, M. T. & ANSELL, A. D. 1996. Tidal, diel and longer term changes in the distribution of fishes on a Scottish sandy beach. Marine Ecology Progress Series 130:17.CrossRefGoogle Scholar
GILMORE, R. G., BULLOCK, L. H. & BERRY, F. H. 1978. Hypothermal mortality in marine fishes of south-central Florida, January, 1977. Northeast Gulf Science 2:7797.CrossRefGoogle Scholar
GRASSHOFF, K. 1983. Determination of nitrite, nitrate, oxygen, thiosulphate. Pp. 61150 in Grasshoff, K., Ehrhardt, M. & Kremling, K. (eds.). Methods of seawater analysis. Verlag Chemie Weinheim, New York.Google Scholar
GRASSHOFF, K., EHRHARDT, M. & KREMLING, K. (eds.) 1983. Methods of sea water analysis. Verlag Chemie Weinheim, New York. 419 pp.Google Scholar
GREENWOOD, M. F. D., STEVENS, P. W. & MATHESON, R. E. 2006. Effects of the 2004 hurricanes on the fish assemblages in two proximate south-west Florida estuaries: change in the context of inter-annual variability. Estuaries and Coasts 29:985996.CrossRefGoogle Scholar
GREENWOOD, M. F. D., IDELBERGER, C. F. & STEVENS, P. W. 2007. Habitat associations of large-bodied mangrove-shoreline fishes in a south-west Florida estuary and the effects of hurricane damage. Bulletin of Marine Science 80:805821.Google Scholar
HILL, B. H., HERLIHY, A. T., KAUFMANN, P. R. & SINSABAUGH, R. L. 1998. Sediment microbial respiration in a synoptic survey of mid-Atlantic region streams. Freshwater Biology 39:493501.CrossRefGoogle Scholar
HUTCHINSON, N. & WILLIAMS, G. A. 2003. Disturbance and subsequent recovery of mid-shore assemblages on seasonal, tropical, rocky shores. Marine Ecology Progress Series 249:2538.CrossRefGoogle Scholar
JONES, D. & CLARE, J. 1977. Annual and long-term fluctuations in the abundance of fish species inhabiting an intertidal mussel bed in Morcambe Bay, Lancashire. Zoological Journal of the Linnean Society 60:117172.CrossRefGoogle Scholar
JUNG, S. & HOUDE, E. D. 2004. Recruitment and spawning-stock biomass distribution of bay anchovy (Anchoa mitchilli) in Chesapeake Bay. Fishery Bulletin 102:6377.Google Scholar
JURY, S. H., HOWELL, W. H. & WATSON, W. H. 1995. Lobster movements in response to a hurricane. Marine Ecology Progress Series 119:305310.CrossRefGoogle Scholar
LITAKER, R. W. & TESTER, P. A. 2003. Extreme events and ecological forecasting, Pp. 8591 in Valette-Silver, N. & Scavia, D. (eds.). Ecological forecasting: new tools for coastal and marine ecosystem management. National Oceanographic and Atmospheric Administration Technical Memorandum NOSNCCOS- 1, Beaufort.Google Scholar
LODGE, D. J. & McDOWELL, W. H. 1991. Summary of ecosystem-level effects of hurricanes. Biotropica 23:373378.CrossRefGoogle Scholar
LODGE, D. J., SCATENA, F. N., ASBURY, C. E. & SANCHEZ, M. J. 1991. Fine litterfall and related nutrient inputs resulting from hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 23:336342.CrossRefGoogle Scholar
LOWE-McCONNELL, R. H. 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge. 382 pp.CrossRefGoogle Scholar
MALLIN, M. A., POSEY, M. H., SHANK, G. C., McIVER, M. R., ENSIGN, S. H. & ALPHIN, T. D. 1999. Hurricane effects on water quality and benthos in the Cape Fear watershed: natural and anthropogenic impacts. Ecological Applications 9:350362.CrossRefGoogle Scholar
MALLIN, M. A., POSEY, M. H., McIVER, M. R., PARSONS, D. C., ENSIGN, S. H. & ALPHIN, T. D. 2002. Impacts and recovery from multiple hurricanes in a piedmont–coastal plain river system. BioScience 52:9991010.CrossRefGoogle Scholar
MANNA, S., CHAUDHURI, K., BHATTACHARYYA, S. & BHATTACHARYYA, M. 2010. Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves. Saline Systems 6:8 doi:10.1186/1746–1448-6–8.CrossRefGoogle ScholarPubMed
MARCHAND, J., CODLING, I., DRAKE, P., ELLIOTT, M., PIHL, L. & REBELO, J. 2002. Environmental quality of estuaries. Pp. 322409 in Elliott, M. & Hemingway, K. L. (eds.). Fishes in estuaries. Blackwell Publishers, Malden.CrossRefGoogle Scholar
McPHERSON, B. F. & MILLER, R. L. 1994. Causes of light attenuation in Tampa Bay and Charlotte Harbor, south-western Florida. Water Resources Bulletin 30:4354.CrossRefGoogle Scholar
MENGE, B. A. & SUTHERLAND, J. P. 1976. Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. American Naturalist 110:351369.CrossRefGoogle Scholar
MITCHELL, A. W., BRAMLEY, R. G. V. & JOHNSON, A. K. L. 1997. Export of nutrients and suspended sediment during a cyclone- mediated flood event in the Herbert River catchment, Australia. Marine and Freshwater Research 48:7988.CrossRefGoogle Scholar
NORTH, E. W. & HOUDE, E. D. 2003. Linking ETM physics, zooplankton prey, and fish early life histories to striped bass Morone saxatilis and white perch M. americana recruitment. Marine Ecology Progress Series 260:219236.CrossRefGoogle Scholar
PAERL, H. W. 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnology and Oceanography 33:823847.Google Scholar
PAERL, H. W., BALES, J. D., AUSLEY, L. W., BUZZELL, C. P., CROWDER, L. B., EBY, L. A., FEAR, J. M., GO, M., PEIERLS, B. L., RICHARDSON, T. L. & RAMUS, J. S. 2001. Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States’ largest lagoonal estuary, Pamlico Sound, NC. Proceedings of the National Academy of Sciences USA 98:56555660.CrossRefGoogle ScholarPubMed
PAPERNO, R., TREMAIN, D. M., ADAMS, D. H., SEBASTIAN, A. P., SAUER, J. T. & DUTKA-GIANELLI, J. 2006. The disruption and recovery of fish communities in the Indian River lagoon, Florida, following two hurricanes in 2004. Estuaries and Coasts 29:10041010.CrossRefGoogle Scholar
RIBEIRO, J., BENTES, L., COELHO, R., GONÇALVES, J. M. S., LINO, P. G., MONTEIRO, P. & ERZINI, K. 2006. Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa lagoon (Portugal). Estuarine, Coastal and Shelf Science 67:461474.CrossRefGoogle Scholar
SAINT-PAUL, U., ZUANON, J., CORREA, M. A. V., GARCIA, M., FABRE, N. N., BERGER, U. & JUNK, W. J. 2000. Fish communities in central Amazonian white- and black-water floodplains. Environmental Biology of Fishes 57:235250.CrossRefGoogle Scholar
SCHAEFER, D. A., McDOWELL, W. H., SCATENA, F. N. & ASBURY, C. E. 2000. Effects of hurricane disturbance on stream water concentrations and fluxes in eight tropical forest watersheds of the Luquillo Experimental Forest, Puerto Rico. Journal of Tropical Ecology 16:189207.CrossRefGoogle Scholar
SHANNON, C. E. & WEAVER, W. 1949. The mathematical theory of communications. University Press of Illinois, Urbana. 117 pp.Google Scholar
SHAW, G. E. & SHEBBEARE, E. O. 1937. The fishes of North Bengal. Journal of Royal Asiatic Society of Bengal 3:1137.Google Scholar
SHIAH, F. K., CHUNG, S. W., KAO, S. J., GONG, G. C. & LIU, K. K. 2000. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Continental Shelf Research 20:20292044.CrossRefGoogle Scholar
SILVANO, R. A. M., AMARAL, B. D. D. & OYAKAWA, O. T. 2000. Spatial and temporal patterns of diversity and distribution of the Upper Jurua River fish community (Brazilian Amazon). Environmental Biology of Fishes 57:2535.CrossRefGoogle Scholar
STEVENS, P. W., BLEWETT, D. A. & CASEY, J. P. 2006. Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of hurricane Charley. Estuaries and Coasts 29:9971003.CrossRefGoogle Scholar
STRICKLAND, J. D. H. & PARSONS, T. R. 1972. A practical handbook of sea-water analysis. Journal of Fisheries Research Board of Canada 167:1311.Google Scholar
TABB, D. C. & JONES, A. C. 1962. Effect of hurricane Donna on the aquatic fauna of north Florida Bay. Transactions of the American Fisheries Society 91:375378.CrossRefGoogle Scholar
TALWAR, P. K. & JHINGRAN, A. 1991. Inland fishes of India and adjacent countries. Oxford and IBH, New Delhi. 541 pp.Google Scholar
TEJERINA-GARRO, F. L. & DE MÉRONA, B. 2001. Gill net sampling standardisation in large rivers of French Guiana (South America). Bulletin Français de la Pêche et de la Pisciculture 357/358:227240.CrossRefGoogle Scholar
TOMASKO, D. A., CORBETT, C. A., GREENING, H. S. & RAULERSON, G. E. 2005. Spatial and temporal variation in seagrass coverage in south-west Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries. Marine Pollution Bulletin 50:797805.CrossRefGoogle Scholar
TYTLER, P. & VAUGHAN, T. 1983. Thermal ecology of the mudskippers, Periophthalmus koelreuteri (Pallas) and Boleophthalmus boddarti (Pallas) of Kuwait Bay. Journal of Fish Biology 23:327337.CrossRefGoogle Scholar
UNDERWOOD, A. J. 1997. Experiment in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge. 504 pp.Google Scholar
VAN DOLAH, R. F. & ANDERSON, G. S. 1991. Effects of hurricane Hugo on salinity and dissolved oxygen conditions in the Charleston Harbor estuary. Pp. 8394 in Finkl, C. W. & Pilkey, O. H. (eds.). Impacts of hurricane Hugo: September 10–22, 1989. Coastal Education and Research Foundation, Fort Lauderdale, Florida.Google Scholar
VRANCKEN, J. V. & O'CONNELL, M. 2010. Effects of hurricane Katrina on freshwater fish assemblages in a small coastal tributary of Lake Pontchartrain, Louisiana. Transactions of the American Fisheries Society 139:17231732.CrossRefGoogle Scholar
WAIDE, R. B. 1991. Summary of the response of animal populations to hurricanes in the Caribbean. Biotropica 23:508512.CrossRefGoogle Scholar
ZAR, J. H. 1999. Biostatistical analysis. (Fourth edition). Prentice Hall, Upper Saddle River. 662 pp.Google Scholar