Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T14:31:06.984Z Has data issue: false hasContentIssue false

Epiphytic biomass of a tropical montane forest varies with topography

Published online by Cambridge University Press:  08 December 2011

F. A. Werner*
Affiliation:
Functional Ecology, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl-von-Ossietzkystraße 9-11, 26111 Oldenburg, Germany
J. Homeier
Affiliation:
Plant Ecology, Institute of Plant Sciences, Untere Karspüle 2, University of Göttingen, 37073 Göttingen, Germany
M. Oesker
Affiliation:
Institute of Botany (210), University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
J. Boy
Affiliation:
Institute of Soil Science, University of Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
*
1Corresponding author. Email: florianwerner@yahoo.com

Abstract:

The spatial heterogeneity of tropical forest epiphytes has rarely been quantified in terms of biomass. In particular, the effect of topographic variation on epiphyte biomass is poorly known, although forests on ridges and ravines can differ drastically in stature and exposure. In an Ecuadorian lower montane forest we quantified epiphytic biomass along two gradients: (1) the twig–branch–trunk trajectory, and (2) the ridge–ravine gradient. Twenty-one trees were sampled in each of three forest types (ridge, slope, ravine positions). Their epiphytic biomass was extrapolated to stand level based on basal area–epiphyte load relationships, with tree basal areas taken from six plots of 400 m2 each per forest type. Our results document the successional addition and partial replacement of lichens by bryophytes, angiosperms and finally dead organic matter along the twig–branch–trunk trajectory. Despite having the highest tree basal area, total epiphytic biomass (mean ± SD) of ravine forest was significantly lower (2.6 ± 0.7 Mg ha−1) than in mid-slope forest (6.3 ± 1.1 Mg ha−1) and ridge forest (4.4 ± 1.6 Mg ha−1), whereas maximum bryophyte water storage capacity was significantly higher. We attribute this pattern to differences in forest dynamics, stand structure and microclimate. Although our study could not differentiate between direct effects of slope position (nutrient availability, mesoclimate) and indirect effects (stand structure and dynamics), it provides evidence that fine-scale topography needs to be taken into account when extrapolating epiphytic biomass and related matter fluxes from stand-level data to the regional scale.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BELLINGHAM, P. J. & TANNER, E. V. J. 2000. The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378384.CrossRefGoogle Scholar
BENDIX, J., ROLLENBECK, R., RICHTER, M., FABIAN, P. & EMCK, P. 2008. Climate. Pp. 6373 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
BENJAMINI, Y. & HOCHBERG, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57:289300.Google Scholar
BIRCH, H. F. & FRIEND, M. T. 1956. The organic-matter and nitrogen status of East African soils. Journal of Soil Science 7:156167.CrossRefGoogle Scholar
BRUIJNZEEL, L. A., MULLIGAN, M. & SCATENA, F. N. 2011. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes 25:465498.CrossRefGoogle Scholar
CAVELIER, J., JARAMILLO, M., SOLIS, D. & DE LEON, D. 1997. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology 193:8396.CrossRefGoogle Scholar
CHEN, L., LIU, W. Y. & WANG, G. S. 2010. Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China. Ecological Research 25:315325.CrossRefGoogle Scholar
DÍAZ, I. A., SIEVING, K. E., PEÑA-FOXON, M. E., LARRAÍN, J. & ARMESTO, J. J. 2010. Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: a neglected functional component. Forest Ecology and Management 259:14901501.CrossRefGoogle Scholar
DUDGEON, W. 1923. Succession of epiphytes in the Quercus incana forest at Landour, western Himalayas. Preliminary notes. Journal of the Indian Botanical Society 3:270272.Google Scholar
EDWARDS, P. J. & GRUBB, P. J. 1977. Studies of mineral cycling in a montane rainforest in New Guinea I. The distribution of organic matter in the vegetation and soil. Journal of Ecology 65:943969.CrossRefGoogle Scholar
EMCK, P. 2007. A climatology of South Ecuador. Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen. 275 pp.Google Scholar
FREIBERG, M. & FREIBERG, E. 2000. Epiphyte diversity and biomass in the canopy of lowland and montane forests in Ecuador. Journal of Tropical Ecology 16:673688.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GÜNTER, S., CABRERA, O., WEBER, M., STIMM, B., ZIMMERMANN, M., FIEDLER, K., KNUTH, J., BOY, J., WILCKE, W., IOST, S., MAKESCHIN, F., WERNER, F. A., GRADSTEIN, S. R. & MOSANDL, R. 2008. Natural forest management in neotropical mountain rain forests – an ecological experiment. Pp. 363376 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.Google Scholar
HOFSTEDE, R. G. M., WOLF, J. H. D. & BENZING, D. H. 1993. Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:3745.Google Scholar
HÖLSCHER, D., KÖHLER, L., VAN DIJK, A. & BRUIJNZEEL, L. A. 2004. The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292:308322.CrossRefGoogle Scholar
HOLWERDA, F., BRUIJNZEEL, L. A., MUNOZ-VILLERS, L. E., EQUIHUA, M. & ASBJORNSEN, H. 2010. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology 384:8496.CrossRefGoogle Scholar
HOMEIER, J. 2004. Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391:1181.Google Scholar
HOMEIER, J., WERNER, F. A., GRADSTEIN, S. R., BRECKLE, S.-W. & RICHTER, M. 2008. Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. Pp. 87100 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
HOMEIER, J., BRECKLE, S.-W., GÜNTER, S., ROLLENBECK, R. T. & LEUSCHNER, C. 2010. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140148.CrossRefGoogle Scholar
HSU, C.-C., HORNG, F.-W. & KUO, C.-M. 2002. Epiphyte biomass and nutrient capital of a moist subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology 18:659670.CrossRefGoogle Scholar
KLINGE, H. & HERRERA, R. 1983. Phytomass structure of natural plant communities on spodosols in southern Venezuela: the tall Amazon caatinga forest. Vegetatio 53:6584.CrossRefGoogle Scholar
KÖHLER, L. 2002. Die Bedeutung der Epiphyten im ökosystemaren Wasser- und Nährstoffumsatz verschiedener Altersstadien eines Bergregenwaldes in Costa Rica. Ph.D. thesis, Georg-August-Universität, Göttingen. 152 pp.Google Scholar
KÖHLER, L., TOBÓN, C., FRUMAU, K. F. A. & BRUIJNZEEL, L. A. S. 2007. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology 193:171184.CrossRefGoogle Scholar
KREFT, H., KÖSTER, N., KÜPER, W., NIEDER, J. & BARTHLOTT, W. 2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. Journal of Biogeography 31:14631476.CrossRefGoogle Scholar
KÜRSCHNER, H. & PAROLLY, G. 2004. Phytomass and water storage capacity of epiphytic rainforest bryophyte communities in S Ecuador. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 125:489504.CrossRefGoogle Scholar
LIEDE, S. & BRECKLE, S.-W. (eds.) 2007. Provisional checklists of flora and fauna of the San Francisco valley and its surroundings (Estación Científica San Francisco, Prov. Zamora-Chinchipe, Southern Ecuador). Ecotropical Monographs 4. Gesellschaft für Tropenökologie, Bonn. 256 pp.Google Scholar
MACKENSEN, J., TILLERY-STEVENS, M., KLINGE, R. & FÖLSTER, H. 2000. Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil. Plant Ecology 151:101119.CrossRefGoogle Scholar
MCCUNE, B. 1993. Gradients in epiphyte biomass in three Pseudotsuga–Tsuga forests of different ages in western Oregon and Washington. Bryologist 96:405411.CrossRefGoogle Scholar
MOTZER, T. 2005. Micrometeorological aspects of a tropical mountain forest. Agricultural and Forest Meteorology 135:230240.CrossRefGoogle Scholar
NADKARNI, N. M. 1984. Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249256.CrossRefGoogle Scholar
NADKARNI, N. M. 2000. Colonization of stripped branch surfaces by epiphytes in a lower montane cloud forest, Monteverde, Costa Rica. Biotropica 32:358363.CrossRefGoogle Scholar
NADKARNI, N. M., SCHAEFER, D., MATELSON, T. J. & SOLANO, R. 2004. Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica. Forest Ecology and Management 198:223236.CrossRefGoogle Scholar
NÖSKE, N. M., HILT, N., WERNER, F. A., BREHM, G., FIEDLER, K., SIPMAN, H. J. M. & GRADSTEIN, S. R. 2008. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic and Applied Ecology 9:412.CrossRefGoogle Scholar
OESKER, M., DALITZ, H., GÜNTHER, S., HOMEIER, J. & MATEZKI, S. 2008. Spatial heterogeneity patterns – a comparison between ravines and crests in the upper part of a evergreen lower montane forest. Pp. 267274 in Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R. (eds.). Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin.CrossRefGoogle Scholar
OESKER, M., DALITZ, H., HOMEIER, J. & BRUIJNZEEL, L. A. 2010. Spatial heterogeneity of canopy throughfall quantity and quality in a tropical mountain forest in South Ecuador. Pp. 391401 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
PÓCS, T. 1980. The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarium Hungaricae 26:143167.Google Scholar
SIPMAN, H. J. M. & HARRIS, R. C. 1989. Lichens. Pp. 303309 in Lieth, H. & Werger, M. J. A. (eds.). Tropical rain forest ecosystems (biogeographical and ecological studies). Elsevier, Amsterdam.CrossRefGoogle Scholar
TAKUYA, M., AIBA, S.-I. & KITAYAMA, K. 2002. Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology 159:3549.CrossRefGoogle Scholar
TANNER, E. V. J. 1980. Studies on the biomass and productivity in a series of montane rain forests in Jamaica. Journal of Ecology 68:573588.CrossRefGoogle Scholar
TOBÓN, C., KÖHLER, L., FRUMAU, K. F. A., BRUIJNZEEL, L. A., BURKARD, R. & SCHMID, S. 2010. Water dynamics of epiphytic vegetation in a lower montane cloud forest: fog interception, storage, and evaporation. Pp. 261267 in Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds.). Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge.Google Scholar
UMANA, N. H. N. & WANEK, W. 2010. Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest. Ecosystems 13:367381.CrossRefGoogle Scholar
VENEKLAAS, E. J., ZAGT, R. J., VAN LEERDAM, A., VAN EK, R., BROEKHOVEN, A. J. & VAN GENDEREN, M. 1990. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183192.CrossRefGoogle Scholar
WEAVER, P. L. 1972. Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science 12:129144.Google Scholar
WERNER, F. A. & GRADSTEIN, S. R. 2009. Diversity of dry forest epiphytes along a gradient of human disturbance in the tropical Andes. Journal of Vegetation Science 20:5968.CrossRefGoogle Scholar
WEST, B. G., BROWN, J. H. & ENQUIST, B. J. 1999. A general model for the structure and allometry of plant vascular systems. Nature 400:664667.CrossRefGoogle Scholar
WILCKE, W., OELMANN, Y., SCHMITT, A., VALAREZO, C., ZECH, W. & HOMEIER, J. 2008. Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. Journal of Plant Nutrition and Soil Science 171:220230.CrossRefGoogle Scholar
WOLF, J. H. D. 1995. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Annals of the Missouri Botanical Garden 80:928960.CrossRefGoogle Scholar
WOLF, J. H. D., GRADSTEIN, S. R. & NADKARNI, N. M. 2009. A protocol for sampling vascular epiphyte richness and abundance. Journal of Tropical Ecology 25:107121.CrossRefGoogle Scholar
WOLF, K., VELDKAMP, E., HOMEIER, J., FLESSA, H. & MARTINSON, G. In press. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles.Google Scholar
ZIMMERMANN, A., WILCKE, W. & ELSENBEER, H. 2007. Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. Journal of Hydrology 343:8096.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2003. The epiphyte vegetation of the palm, Socratea exorrhiza – correlations with tree size, tree age, and bryophyte cover. Journal of Tropical Ecology 19:8190.CrossRefGoogle Scholar