Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-01T06:46:10.120Z Has data issue: false hasContentIssue false

Gabor lenses for capture and energy selection of laser driven ion beams in cancer treatment

Published online by Cambridge University Press:  09 October 2013

J. Pozimski*
Affiliation:
STFC RAL ISIS, Chilton, Didcot, Oxfordshire, United Kingdom Imperial College London, Blackett Lab, High Energy Physics Department, Prince Consort Road, London, United Kingdom
M. Aslaninejad
Affiliation:
Imperial College London, Blackett Lab, High Energy Physics Department, Prince Consort Road, London, United Kingdom
*
Address correspondence and reprint requests to: Juergen Pozimski, Imperial College, Blackett lab, Prince Consort Road, South Kensington, SW7 2AZ, London, United Kingdom. E-mail: j.pozimski@imperial.ac.uk

Abstract

The application of laser accelerated ion beams in Hadron therapy requires ion beam optics with unique features. It has been shown that due to the spectral and spatial distribution of laser accelerated protons a lens based focusing system has advantages over aperture collimated beam formation. We present a compact ion optical system with therapy applications, based on Gabor space charge lenses for collecting, focusing and energy filtering the laser produced proton beam. For a full therapy solution, a scenario based on three space charge lenses is presented. In this very compact beam line an aperture is foreseen for energy selection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amaldi, U. & Kraft, G. (2005). Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 18611882.CrossRefGoogle Scholar
Booth, R. & Levevre, H.W. (1978). Space-charge-lens for high current Ion beams. Nucl. Inst. & Meth. 151, 143147.CrossRefGoogle Scholar
Burris-Mog, T., Harres, K., Nurnberg, F., Busold, S., Bussmann, M., Deppert, O., Hoffmeister, G., Joost, M., Sobiella, M., Tauschwitz, A., Zielbauer, B., Bagnoud, V., Hermannsdoerfer, T., Roth, M. & Cowan, T.E. (2011). Laser accelerated protons captured and transported by a pulse power solenoid, Phys. Rev. ST Accel. Beams 14, 121301.CrossRefGoogle Scholar
Dobrovolskiy, A., Dunets, S., Evsyukov, A., Goncharov, A., Gushenets, V., Litovko, I. & Oks, E. (2010). Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams. Rev. Sci. Instrum. 81, 02B704.CrossRefGoogle ScholarPubMed
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Fuchs, J., Audebert, P., Borghesi, M., Pepin, H. & Willi, O. (2009). Laser acceleration of low emittance, high energy ions and applications. C. R. Phys. 10, 176.CrossRefGoogle Scholar
Gabor, D. (1947). A Space charge lens for the focusing of ion beams. Nature (London) 160, 8990.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, K. & Fernandez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV Ion beams. Nature (London) 439, 441.CrossRefGoogle ScholarPubMed
Hofmann, I., Meyer-ter-Vehn, J., Yan, X., Orzhekhovskaya, A. & Yaramyshev, S. (2011). Collection and focusing of laser accelerated ion beams for therapy application. Phys. Rev. ST Accel. Beams 14, 031304.CrossRefGoogle Scholar
Hofmann, I., Orzhekhovskaya, A. & Yaramyshev, S. (2009). Laser accelerated ions and their potential for therapy accelerators. Proc. HIAT09, Venice, Italy.Google Scholar
Hofmann, I., Meyer-Ter-Vehn, J., Yan, X. & Al-Omari, H. (2012). Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy. Nucl. Instr. Meth. Phys. Res. A 681, 4454.CrossRefGoogle Scholar
Hofmann, I. (2013). Performance of solenoids versus quadrupoles in focusing and energy selection of laser accelerated protons. Phys. Rev. ST Accel. Beams. 16, 041302.CrossRefGoogle Scholar
Kraft, S.D., Richter, C., Zeil, K., Baumann, M., Beyreuther, E., Bock, S., Bussmann, M., Cowan, T.E., Dammene, Y., Enghardt, W., Helbig, U., Karsch, L., Kluge, T., Laschinsky, L., Lessmann, E., Metzkes, J., Naumburger, D., Sauerbrey, R., Schürer, M., Sobiella, M., Woithe, J., Schramm, U. & Pawelke, J. (2010). Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 12, 085003.CrossRefGoogle Scholar
Linz, U. & Alonso, J. (2007). What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev. ST Accel. Beams 10, 094801.CrossRefGoogle Scholar
Ma, C.-M., Veltchev, I., Fourkal, E., Li, J.S., Luo, W., Fan, J., Lin, T. & Pollack, A. (2006). Development of a laser-driven proton accelerator for cancer therapy. Laser Phys. 16, 639646.CrossRefGoogle Scholar
Meusel, O., Pozimski, J., Jakob, A. & Lakatos, A. (2001). Low energy beam transport for HIDIF. Nucl. Instr. Meth. Phys. Res. A 464, 512517.CrossRefGoogle Scholar
Meusel, O., Bechtold, A., Pozimski, J., Ratzinger, U., Schempp, A. & Klein, H. (2005). Low-energy beam transport using space-charge lenses. Nucl. Instr. Meth. Phys. Res. A 544, 447453.CrossRefGoogle Scholar
Mobley, R.M. (1978). Gabor Lenses-Experimental Results at Brookhaven. BNL-25173. Upton, NY: Brookhaven National Lab.Google Scholar
Noble, R.J. (1988). Beam transport with magnetic solenoids and plasma lenses. Proc. Linear Accelerator Conference. Williamsburg, Virginia.Google Scholar
Nurnberg, F., Alber, I., Harres, K., Schollmeier, M., Roth, M., Barth, W., Eickhoff, H., Hofmann, I., Friedman, A., Grote, D.P. & Logan, B.G. (2009). Capture and control of laser-accelerated proton beams: Experiment and simulation. FR5RFP007. Proc. PAC'09. Vancouver, BC, Canada.Google Scholar
Palkovic, J.A. (1991). Measurements on a Gabor lens for neutralizing and focusing a 30 keV proton beam. PhD Thesis. Madison: University of Wisconsin.Google Scholar
Palkovic, J.A., Mills, F.E., Schmidt, C. & Young, D.E. (1990). Gabor Lens Focusing of a Proton Beam. Rev. Sci. Instrum. 61, 550.Google Scholar
Pozimski, J. (1997). Untersuchungen zum transport raumladungskompensierter niederenergetischer und intensiver Ionenstrahlen mit einer Gabor plasma-linse. PhD Thesis. Frankfurt: University Frankfurt am Main, Germany.Google Scholar
Pozimski, J. & Aslaninejad, M. (2012). Gabor lens focussing for medical applications. Proc of the IPAC Conference. New Orleans.Google Scholar
Pozimski, J. & Meusel, O. (2005). Space charge lenses for particle beams. Rev. Sci. Instrum. 76, 063308.CrossRefGoogle Scholar
Qiao, B., Zepf, M., Borghesi, M. & Geissler, M. (2009). Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002.CrossRefGoogle ScholarPubMed
Reiser, M. (1989). Comparison of Gabor lens, gas focusing and electrostatic quadrupole focusing for low energy ion beams. Proc of the PAC Conference. Chicago.Google Scholar
Soloshenko, A., Goretsky, V.P., Gorshkov, V.N. & Zavalov, A.M. (2004). Space charge lens for focusing negative ion beam: Theory and experiment. Rev. Sci. Instrum. 75, 1774.CrossRefGoogle Scholar
Ter-Avetisya, S., Schnuber, M., Polster, R., Nickles, P.V & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams, 26, 637.Google Scholar
Woods, K., Boucher, S., O'Shea, F.H. & Hegelich, B.M. (2013). Beam conditioning system for laser-driven hadron therapy. Proc. IPAC2013, Shanghai. China.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar