Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-17T21:20:02.340Z Has data issue: false hasContentIssue false

High-power laser beam shaping using apodized apertures

Published online by Cambridge University Press:  09 March 2009

S. G. Lukishova
Affiliation:
Institute of Radioengineering and Electronics, USSR Academy of Sciences, Centre, Marx Prospekt 18, 103907, Moscow, USSR
P. P. Pashinin
Affiliation:
Institute of General Physics, Moscow, USSR
S. Kh. Batygov
Affiliation:
Institute of General Physics, Moscow, USSR
V. A. Arkhangelskaya
Affiliation:
State Optical Institute, Leningrad, USSR
A. E. Poletimov
Affiliation:
State Optical Institute, Leningrad, USSR
A. S. Scheulin
Affiliation:
State Optical Institute, Leningrad, USSR
B. M. Terentiev
Affiliation:
All-Union Institute of Radiation Engineering, Moscow, USSR

Abstract

This paper gives the results of the investigations of four types of apodized (soft) apertures for beam shaping of UV, visible and IR high-power lasers with near-Gaussian and flat-top transmittance. The apodized apertures (AA) are ≈3–45 mm in diameter, but the principles of fabrication of such apertures lends the possibility of apodizing beams with diameter <1 mm and >200 mm. The examples of studies of the AA in high-power lasers are presented. The possibility of avoiding the Fresnel diffraction ripples is proved experimentally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armandillo, E. A. & Giuliani, G. 1985 Opt. Lett. 10, 445.CrossRefGoogle Scholar
Baranova, N. B. et al. 1974 Sov. Phys., Quantum Electr. (in Russian), 1, 2435.Google Scholar
Belyaev, V. N. et al. 1976 Sov. Phys., Quantum Electr. (in Russian), 3, 2286.Google Scholar
Costich, V. R. & Johnson, B. C. 1974 Laser Focus 10, 43.Google Scholar
Diels, J. -C. 1975 Appl. Opt. 14, 2810.CrossRefGoogle Scholar
Fleck, I. A. & Layne, C. 1973 Appl. Phys. Lett. 22, 467.CrossRefGoogle Scholar
Jacquinot, P. & Roizen-Dossier, B. 1964 in Progress in Optics, ed. Wolf, E. (John Wiley, New York), 3, 29.Google Scholar
Krasjuk, I. K. et al. 1976 Sov. Phys., Pis'ma ZTF (in Russian), 2, 577.Google Scholar
Krasjuk, I. K. et al. 1976a Sov. Phys., Quantum Electr. (in Russian), 3, 1337.Google Scholar
LLNL 1973 Semiannual Report Jan.-June. UCRL-50021–73–1.Google Scholar
LLNL 1977 Annual Report, UCRL-50021–76.Google Scholar
Lukishova, S. G. et al. 1987, in Formation and control of optical wave-fronts (Nauka publ., Moscow), ed. Pashinin, P. P., Proceed, of Inst. of General Physics (in Russian), 7, 92.Google Scholar
Maréchal, A. & Françon, M. 1960 Diffraction. Structure des images (Ed. Rev. d'opt. theor. et instr., Paris).Google Scholar
Mollenauer, L. F. 1978 Rev. Sci. Instr., 49, 809.CrossRefGoogle Scholar
Slusarev, G. G. 1960 Possible and Impossible in Optics (Fizmatgiz, Moscow, in Russian).Google Scholar
Vinokurov, G. N. et al. 1976 Abstracts of 8th All-Union Conf. on coherent and nonlinear optics(Tbilisy,USSR, in Russian), 2, 239.Google Scholar
Zherikhin, A. N., Matveets, Yu. A. & Chekalin, S. N. 1976 Sov. Phys., Quantum Electr. (in Russian), 3, 1585.Google Scholar