Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T22:55:11.888Z Has data issue: false hasContentIssue false

Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma

Published online by Cambridge University Press:  15 October 2007

W. Yu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
M. Y. Yu*
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou, China Institut für Theoretische Physik I, Ruhr-Universität, Bochum, Germany
H. Xu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
Y. W. Tian
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Shanghai, China
J. Chen
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA
A. Y. Wong
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, CA
*
Address correspondence and reprint requests to: M. Y. Yu, Institut für Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum, Germany. E-mail: ming.yu@rub.de

Abstract

Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 577581.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115121.Google Scholar
Ditmire, T., Zweiback, J., Vanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Geddes, C.G.R., Toth, C.S., Tilborg, J.Van Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.CrossRefGoogle ScholarPubMed
Gibbon, P., (2005). Short Pulse Laser Interactions with Matter: An Introduction, London: Imperial College Press.Google Scholar
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1522.CrossRefGoogle Scholar
Habara, H., Lancaster, K.L., Karsch, S., Murphy, C.D., Norreys, P.A., Evans, R.G., Borghesi, M., Romagnani, L., Zepf, M., King, J.A., Snavely, R., Akli, K., Zhang, B., Freeman, R., Hatchett, S., MacKinnon, A.J., Patel, P., Key, M.H., Stoeckl, C. & Stephens, R.B. (2004). Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions. Phys. Rev. E 70, 046414.CrossRefGoogle ScholarPubMed
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazewic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short pulse-laser-plasma interaction with thin foils, Phys. Rev. Lett. 89, 085002.CrossRefGoogle ScholarPubMed
Hegelich, B.M., Albright, B., Audebert, P., Blazevic, A., Brambrink, E., Cobble, J., Cowan, T., Fuchs, J., Gauthier, J.C., Gautier, C., Geissel, M., Habs, D., Johnson, R., Karsch, S., Kemp, A., Letzring, S., Roth, M., Schramm, U., Schreiber, J., Witte, K.J. & Fernández, J.C. (2005). Spectral properties of laser-accelerated mid-Z MeV/u ion beams, Phys. Plasmas 12, 056314.CrossRefGoogle Scholar
Karsch, S., Habs, D., Schatz, T., Schramm, U., Thirolf, P.G., Meyer-ter-Vehn, J., and Pukhov, A. (1999). Particle physics with petawatt-class lasers, Laser Part. Beams 17, 565570.Google Scholar
Kawata, S., Kong, Q., Miyazaki, S., Miyauchi, K., Sonobe, R., Sakai, K., Nakajima, K., Masuda, S., Ho, Y.K., Miyanaga, N., Limpouch, J. & Andreev, A.A. (2005). Electron bunch acceleration and trapping by ponderomotive force of an intense short-pulse laser. Laser Part. Beams 23, 6167.Google Scholar
Kim, H.C., Stenzel, R.L. & Wong, A.Y. (1974). Phys. Rev. Lett. 33, 886890.CrossRefGoogle Scholar
Kodama, R., Takahashi, K., Tanaka, K.A., Tsukamoto, M., Hashimoto, H., Kato, Y. & Mima, K. (1996). Study of laser-hole boring into overdense plasmas. Phys. Rev. Lett. 77, 49064909.Google Scholar
Kodama, R., Tanaka, K.A., Yamanaka, T., Kato, Y., Kitagawa, Y., Fujita, H., Kanabe, T., Izumi, N., Takahashi, K., Habar, H., Okada, K., Iwata, M., Matsushita, T. & Mima, K. (1999). Studies of intense laser-plasma interactions for the fast ignitor concept at ILE, Osaka University. Plasma Phys. Control. Fusion 41, 419425.CrossRefGoogle Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Kruer, W.L. (1988). Physics of Laser Plasma Interactions New York: Addison-Wesley.Google Scholar
Lasinski, B.F., Langdon, A.B., Hatchett, S.P., Key, M.H. & Tabak, M. (1999). Particle-in-cell simulations of ultra intense laser pulses propagating through overdense plasma for fast-ignitor and radiography applications. Phys. Plasmas 6, 2041.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser-plasma accelerator. Laser Part. Beams 24, 255259.Google Scholar
Lu, W., Huang, C., Zhou, M.M., Mori, W.B. & Katsouleas, T. (2005). Limits of linear plasma wakefield theory for electron or positron beams. Phys. Plasmas 12, 063101.CrossRefGoogle Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazewic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV Ion Jets from shortpulse-laser-plasma interaction with thin foils, Phys. Rev. Lett. 89, 085002.Google Scholar
Malka, V. & Fritzler, S. (2004). Electron and proton beams produced by ultra short laser pulses in the relativistic regime. Laser Part. Beams 22, 399405.CrossRefGoogle Scholar
Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F.Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B. & Dangor, A.E. (2002). Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science. 298, 15961600.Google Scholar
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535539.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371, and the references therein.CrossRefGoogle Scholar
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.-C., Audebert, P., Fuchs, J., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST Accel. Beams 5, 061301.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, B., Blazevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neelz, D., Ruhl, H., Schlegel, T., & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V. Yu., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.Y., Wagner, R., Mourou, G. & Umstadter, D. (1997). Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high intensity laser pulse with He gas jet. JETP Lett 66, 828830.CrossRefGoogle Scholar
Wilks, S.C. & Kruer, W.L. (1997). Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE Quantum Electron 33, 19541961.Google Scholar
Xu, H., Yu, W., Lu, P.X., Senecha, V.K., He, F., Shen, B.F., Qian, L.J., Li, R.X. & Xu, Z.Z. (2005). Electron self-injection and acceleration driven by a tightly focused intense laser beam in an underdense plasma. Phys. Plasmas 12, 013105.Google Scholar
Yu, M.Y. & Shukla, P.K. (1978). Phys. Fluids 18, 1591.Google Scholar
Yu, W., Xu, H., He, F., Yu, M.Y., Ishiguro, S., Zhang, J. & Wong, A.Y. (2005). Direct acceleration of solid-density plasma bunch by ultraintense laser. Phys. Rev. E 72, 046401.Google Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2006). A comparison of ultrarelativistic electron- and positron-bunch propagation in plasmas. Phys. Plasmas 13, 092109.CrossRefGoogle Scholar