Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T15:40:07.723Z Has data issue: false hasContentIssue false

Laser generated 300 keV electron beams from water

Published online by Cambridge University Press:  15 December 2011

Jens Uhlig*
Affiliation:
Department of Chemical Physics, Lund University, Lund, Sweden
Claes-Göran Wahlström
Affiliation:
Department of Physics, Lund University, Lund, Sweden
Monika Walczak
Affiliation:
Department of Chemical Physics, Lund University, Lund, Sweden
Villy Sundström
Affiliation:
Department of Chemical Physics, Lund University, Lund, Sweden
Wilfred Fullagar
Affiliation:
Department of Chemical Physics, Lund University, Lund, Sweden
*
Address correspondence and reprint requests to: Jens Uhlig, Department of Chemical Physics, Lund University, Lund University, P. O. Box 124, 22100 Lund, Sweden. E-mail: jens.uhlig@chemphys.lu.se

Abstract

300 keV electron beams with energy peaked in the range 280–390 keV were generated by focusing a high contrast ratio but temporally double pulsed 800 nm ultrafast laser onto a flowing water jet under both helium atmosphere at ambient pressure and water aspirator vacuum conditions, using laser intensities in the range 1015–1018 Wcm−2. Their characteristics have been investigated as functions of inter-pulse delay, incidence geometry and laser pulse chirp. Shot-to-shot variation of the beams' equatorial and azimuthal distributions was also recorded in real time. Measurements of the emitted charge and energy have been performed. Secondary X-ray emission arising from impingement of the electron beams on the target chamber walls and other parts of the apparatus have been identified. Preliminary results after transition to a high repetition rate laser system have shown similar behavior. Approaches for improvements and applications are suggested.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, H., Nakano, H., Nishikawa, T. & Uesugi, N. (1996). Simultaneous measurement of absorption and x-ray emission from preformed plasma generated by ultrashort prepulse. Jap J. Appl. Phys. 35, L154L157.Google Scholar
Anand, M., Gibbon, P. & Krishnamurthy, M. (2007). Hot electrons produced from long scale-length laser-produced droplet plasmas. Laser Phys. 17, 408414.Google Scholar
Anand, M., Kahaly, S., Kumar, G.R., Krishnamurthy, M., Sandhu, A.S. & Gibbon, P. (2006). Enhanced hard X-ray emission from microdroplet preplasma. Appl. Phys. Lett. 88, 181111–1Google Scholar
Bastiani, S., Rousse, A., Geindre, J.P., Audebert, P., Quoix, C., Hamoniaux, G., Antonetti, A. & Gauthier, J.C. (1997). Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths. Phys. Rev. E 56, 71797185.Google Scholar
Berger, M.J., Coursey, J.S., Zucker, M.A. & Chang, J. (1998). Stopping powers for electrons and positrons. http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.Google Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Centurion, M., Reckenthaeler, P., Fuss, W., Trushin, S., Apolonski, A., Krausz, F. & Fill, E.E. (2009). Ultrafast imaging with electron pulses. Proc. Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, pp. 10931094.Google Scholar
Centurion, M., Reckenthaeler, P., Trushin, S.A., Krausz, F. & Fill, E.E. (2008). Picosecond electron deflectometry of optical-field ionized plasmas. Nat. Photon. 2, 315318.Google Scholar
Chen, L.M., Kando, M., Xu, M.H., Li, Y.T., Koga, J., Chen, M., Xu, H., Yuan, X.H., Dong, Q.L., Sheng, Z.M., Bulanov, S.V., Kato, Y., Zhang, J. & Tajima, T. (2008). Study of X-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil. Phys. Rev. Lett. 100, 045004.Google Scholar
Chen, L.M., Liu, F., Wang, W.M., Kando, M., Mao, J.Y., Zhang, L., Ma, J.L., Li, Y.T., Bulanov, S.V., Tajima, T., Kato, Y., Sheng, Z.M., Wei, Z.Y. & Zhang, J. (2010). Intense high-contrast femtosecond k-shell X-ray source from laser-driven ar clusters. Phys. Rev. Lett. 104, 215004.Google Scholar
Dorchies, F., Harmand, M., Descamps, D., Fourment, C., Hulin, S., Petit, S., Peyrusse, O. & Santos, J.J. (2008). High-power 1 kHz laser-plasma X-ray source for ultrafast X-ray absorption near-edge spectroscopy in the keV range. Appl. Phys. Lett. 93, 121113.Google Scholar
Estabrook, K. (1976). Critical surface bubbles and corrugations and their implications to laser fusion. Phys. Fluids 19, 1733.Google Scholar
Estabrook, K.G., Valeo, E.J. & Kruer, W.L. (1975). Two-dimensional relativistic simulations of resonance absorption. Phys. Fluids 18, 1151.Google Scholar
Fullagar, W., Uhlig, J., Walczak, M., Canton, S., Wahlström, C.-G. & Sundström, V. (2007 a). Radiations from a water jet plasma source. http://www.maxlab.lu.se/emergingsources/images/wilfred_fullagar_poster_A2.pdf.Google Scholar
Fullagar, W.K., Harbst, M., Canton, S., Uhlig, J., Walczak, M., Wahlström, C.-G. & Sundström, V. (2007 b). A broadband laser plasma X-ray source for application in ultrafast chemical structure dynamics. Rev. Sci. Instr. 78, 115105.Google Scholar
Fullagar, W.K., Uhlig, J., Gador, N., Kinnunen, K., Maasilta, I., Wahlström, C.-G. & Sundström, V. (2010). Lab-based ultrafast molecular structure. Proc. AIP Conference Proceedings. pp. 919922. Melbourne: Australia American Institute of Physics.Google Scholar
Fullagar, W.K., Uhlig, J., Walczak, M., Canton, S. & Sundstrom, V. (2008). The use and characterization of a backilluminated charge-coupled device in investigations of pulsed X-ray and radiation sources. Rev. Sci. Instr. 79, 103302.Google Scholar
Genoud, G., Wojda, F., Burza, M., Persson, A. & Wahlström, C.-G. (2011). Active control of the pointing of a multi-terawatt laser. Rev. Sci. Instr. 82, 033102033102.Google Scholar
Gizzi, L.A. (2010). Progress in Ultrafast Intense Laser Science. In Yamanouchi, K., Giulietti, A. and Ledingham, K., Eds.), Vol. 98, pp. 123138. Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
Glinec, Y., Faure, J., Guemnie-Tafo, A., Malka, V., Monard, H., Larbre, J.P., De Waele, V., Marignier, J.L. & Mostafavi, M. (2006). Absolute calibration for a broad range single shot electron spectrometer. Rev. Sci. Instr. 77, 103301.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.Google Scholar
Guo, T. (2009). More power to X-rays: New developments in X-ray spectroscopy. Laser Photon. Rev. 3, 591622.Google Scholar
Hatanaka, K., Ono, H. & Fukumura, H. (2008). X-ray pulse emission from cesium chloride aqueous solutions when irradiated by double-pulsed femtosecond laser pulses. Appl. Phys. Lett. 93, 064103.Google Scholar
Hidding, B., Pretzler, G., Clever, M., Brandl, F., Zamponi, F., Lübcke, A., Kämpfer, T., Uschmann, I., Förster, E., Schramm, U., Sauerbrey, R., Kroupp, E., Veisz, L., Schmid, K., Benavides, S. & Karsch, S. (2007). Novel method for characterizing relativistic electron beams in a harsh laser-plasma environment. Rev. Sci. Instr. 78, 083301.Google Scholar
Hou, B., Easter, J., Mordovanakis, A.G., Krushelnick, K. & Nees, J.A. (2008). Vacuum-free X-ray source based on ultrashort laser irradiation of solids. Opt. Express 16, 17695.Google Scholar
Hu, G.-Y., Lei, A.-L., Wang, W.-T., Wang, X., Huang, L.-G., Wang, J.-W., Xu, Y., Liu, J.-S., Yu, W., Shen, B.-F., Li, R.-X. & Xu, Z.-Z. (2010). Collimated hot electron jets generated from subwavelength grating targets irradiated by intense short-pulse laser. Phys. Plasmas 17, 033109.Google Scholar
Jaroszynski, D.A., Reitsma, A. & Ersfeld, B. (2009). Laser-Plasma Interactions. In (Jaroszynski, D.A., Bingham, R., and Cairns, R.A., Eds.), pp. 110169. New York: Taylor & Francis Group.Google Scholar
Kruer, W.L. (1975). Theoretical interpretations of enhanced laser light absorption. Proc. Progress in Lasers and Laser Fusion. pp. 526. New York: Plenum Press.Google Scholar
Kugland, N.L., Constantin, C.G., Neumayer, P., Chung, H.-K., Collette, A., Dewald, E.L., Froula, D.H., Glenzer, S.H., Kemp, A., Kritcher, A.L., Ross, J.S. & Niemann, C. (2008). High Kα X-ray conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Appl. Phys. Lett. 92, 241504.Google Scholar
Lee, T., Jiang, Y., Rose-Petruck, C.G. & Benesch, F. (2005). Ultrafast tabletop laser-pump-X-ray probe measurement of solvated Fe(CN)(6)(4-). J. Chem. Phys. 122, 084506.Google Scholar
Li, Z., Daido, H., Fukumi, A., Sagisaka, A., Ogura, K., Nishiuchi, M., Orimo, S., Hayashi, Y., Mori, M., Kado, M., Bulanov, S.V., Esirkepov, T.Z., Oishi, Y., Nayuki, T., Fujii, T., Nemoto, K., Nakamura, S. & Noda, A. (2006). Measurements of energy and angular distribution of hot electrons and protons emitted from a p- and s-polarized intense femtosecond laser pulse driven thin foil target. Phys. Plasmas 13, 043104.Google Scholar
Lindau, F. (2007). Laser-driven particle acceleration: Experimental investigations. PhD Thesis (LRAP-378). Lund University.Google Scholar
Loupias, B., Perez, F., Benuzzi-Mounaix, A., Ozaki, N., Rabec, M., Gloahec, L.E., Pikuz, T.A., Faenov, A.Y., Aglitskiy, Y. & Koenig, M. (2009). Highly efficient, easily spectrally tunable X-ray backlighting for the study of extreme matter states. Laser Part. Beams 27, 601.Google Scholar
Lundh, O. (2008). Laser-driven beams of fast ions, relativistic electrons and coherent X-ray photons. PhD Thesis (LRAP-391). Lund University.Google Scholar
Mangles, S.P.D., Genoud, G., Kneip, S., Burza, M., Cassou, K., Cros, B., Dover, N.P., Kamperidis, C., Najmudin, Z., Persson, A., Schreiber, J., Wojda, F. & Wahlström, C.-G. (2009). Controlling the spectrum of X-rays generated in a laser-plasma accelerator by tailoring the laser wavefront. Appl. Phys. Lett. 95, 181106.Google Scholar
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.Google Scholar
Mathur, D., Rajgara, F.A., Dharmadhikari, A.K. & Dharmadhikari, J.A. (2008). Strong-field ionization of water by intense few-cycle laser pulses. Phys. Rev. A 78, 023414.Google Scholar
Max, C.E. (1980). Laser Plasma Interaction. Proc. Les Houches Summer School Proceedings. pp. 301410. Amsterdam: Elsevier Science Ltd.Google Scholar
Mordovanakis, A.G., Masson-Laborde, P.-E., Easter, J., Popov, K., Hou, B., Mourou, G.r., Rozmus, W., Haines, M.G., Nees, J. & Krushelnick, K. (2010). Temperature scaling of hot electrons produced by a tightly focused relativistic-intensity laser at 0.5 kHz repetition rate. Appl. Phys. Lett. 96, 071109.Google Scholar
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospective. Laser Part. Beams 22, 512.Google Scholar
Mulser, P. & Bauer, D. (2010). High Power Laser-Matter Interaction Höhler, G., Fujimori, A., Kühn, J., Müller, T., Steiner, F., Trümper, J. and Wölfle, P., Eds.). Berlin, Heidelberg: Springer.Google Scholar
Nakano, H., Nishikawa, T., Ahn, H. & Uesugi, N. (1996). Effects of an ultrashort prepulse on soft X-ray generation from an aluminium plasma produced by femtosecond Ti:sapphire laser pulses. Appl. Phys. B 63, 107111.Google Scholar
Naumova, N., Sokolov, I., Nees, J., Maksimchuk, A., Yanovsky, V. & Mourou, G. (2004). Attosecond electron bunches. Phys. Rev. Lett. 93, 195003.Google Scholar
Pikuz, S.A., Chefonov, O.V., Gasilov, S.V., Komarov, P.S., Ovchinnikov, A.V., Skobelev, I.Y., Ashitkov, S.Y., Agranat, M.V., Zigler, A. & Faenov, A.Y. (2010). Micro-radiography with laser plasma X-ray source operating in air atmosphere. Laser Part. Beams 28, 393397.Google Scholar
Reckenthaeler, P., Centurion, M., Fuss, W., Trushin, S.A., Krausz, F. & Fill, E.E. (2009). Time-Resolved Electron Diffraction from Selectively Aligned Molecules. Phys. Rev. Lett. 102, 213001.Google Scholar
Rousse, A., Phuoc, K.T. & Albert, F. (2007). Progress in Ultrafast Intense Laser Science II. In Progress in Ultrafast Intense Laser Science II, Vol. 85, pp. 215230. Berlin, Heidelberg, Springer Berlin Heidelberg.Google Scholar
Ruhl, H., Sentoku, Y., Mima, K., Tanaka, K. & Kodama, R. (1999). Collimated Electron Jets by Intense Laser-Beam–Plasma Surface Interaction under Oblique Incidence. Phys. Rev. Lett. 82, 743746.Google Scholar
Sansone, G., Benedetti, E., Caumes, J.-P., Stagira, S., Vozzi, C., De Silvestri, S. & Nisoli, M. (2006). Control of long electron quantum paths in high-order harmonic generation by phase-stabilized light pulses. Phys. Rev. A 73, 053408.Google Scholar
Silies, M., Witte, H., Linden, S., Kutzner, J., Uschmann, I., Förster, E. & Zacharias, H. (2009). Table-top kHz hard X-ray source with ultrashort pulse duration for time-resolved X-ray diffraction. Appl. Phys. A 96, 5967.Google Scholar
Sjögren, A. (2002). Laser-Matter Interactions at Extreme Irradiance: X-ray Generation and Relativistic Channeling. PhD Thesis (LRAP-288). Lund University.Google Scholar
Steinke, S., Henig, A., Schnürer, M., Sokollik, T., Nickles, P.V., Jung, D., Kiefer, D., Hörlein, R., Schreiber, J., Tajima, T., Yan, X.Q., Hegelich, M., Meyer-ter-Vehn, J., Sandner, W. & Habs, D. (2010). Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28, 215.Google Scholar
Svanberg, S., Larsson, J., Persson, A. & Wahlström, C.-G. (1994). Lund high-power laser facility – systems and first results. Phys. Scripta 49, 187197.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Physics of Plasmas 1, 1626.Google Scholar
Tajima, T. & Dawson, J. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Tarasevitch, A., Gibbon, P., Mašek, M., Teubner, U., Lu, W., Nicoul, M., Shymanovich, U., Zhou, P., Sokolowski-Tinten, K. & Linde, D. (2009). Modelling and optimisation of fs laser-produced K α sources. Appl. Phys. A 96, 2331.Google Scholar
Wang, W., Liu, J., Cai, Y., Wang, C., Liu, L., Xia, C., Deng, A., Xu, Y., Leng, Y., Li, R. & Xu, Z. (2010). Angular and energy distribution of fast electrons emitted from a solid surface irradiated by femtosecond laser pulses in various conditions. Phys. Plasmas 17, 023108.Google Scholar
Zamponi, F., Ansari, Z., Korff Schmising, C., Rothhardt, P., Zhavoronkov, N., Woerner, M., Elsaesser, T., Bargheer, M., Trobitzsch-Ryll, T. & Haschke, M. (2009). Femtosecond hard X-ray plasma sources with a kilohertz repetition rate. Appl. Phys. A 96, 5158.Google Scholar
Zhang, J., Li, Y.T., Sheng, Z.M., Wei, Z.Y., Dong, Q.L. & Lu, X. (2005). Generation and propagation of hot electrons in laser-plasmas. Appl. Phys. B 80, 957971.Google Scholar