Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-08-05T00:49:59.026Z Has data issue: false hasContentIssue false

Mechanisms of level population in gas lasers pumped by ionizing radiation

Published online by Cambridge University Press:  15 August 2014

Mendykhan U. Khasenov*
Affiliation:
Nazarbayev University Research and Innovation System PI, Astana, Kazakhstan
*
Address correspondence and reprint requests to: Mendykhan U. Khasenov, 53 Kabanbay batyr ave., NURIS, Astana, 010000, Kazakhstan. E-mail: mendykhan.khassenov@nu.edu.kz

Abstract

The mechanisms of level population in high pressure gas lasers pumped by ionizing radiation at the 3p-3s transitions of neon, the d-p transitions of argon, krypton, xenon, and triplet lines of mercury are analyzed. It is shown that dissociative recombination of molecular ions with electrons is not the basic process responsible for populating the p levels of inert gas atoms. It is assumed that the most likely channel for d-level population is direct excitation of atoms by secondary electrons and excitation transfer from buffer gas atoms, with p levels being populated by transitions from upper levels. Dissociative recombination of mercury molecular ions with electrons is the basic process responsible for populating the 73S1 level of mercury atoms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramov, A.A., Gorbunov, V.V., Melnikov, S.P., Mukhamatullin, A.Kh., Pikulev, A.A., Sinitsyn, A.V., Sinyanskii, A.A. & Tsvetkov, V.M. (2006). Luminescence of nuclear-induced rare-gas plasmas in near infrared spectral range. Proc. SPIE 6263, 279296.Google Scholar
Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Ponce, D.M., Hegeler, F. & Petrova, Ts. (2006). Experimental evidence for the role of the Xe2+ in pumping of the Ar-Xe infrared laser. Appl. Phys. Lett. 88, 121120.CrossRefGoogle Scholar
Apruzese, J.P., Giuliani, J.L., Wolford, M.F., Sethian, J.D., Petrov, G.M., Hinshelwood, D.D., Myers, M.C., Dasgupta, A., Hegeler, F. & Petrova, Ts. (2008). Optimizing the Ar-Xe infrared laser on the Naval Research Laboratory's Electra generator. J. Appl. Phys. 104, 013101.CrossRefGoogle Scholar
Barrios, A., Sheldon, J., Hardy, K. & Peterson, J.R. (1992). Superthermal component in an effusive beam of metastable krypton: Evidence of Kr2+ dissociative recombination. Phys. Rev. Lett. 69, 13481351.CrossRefGoogle Scholar
Batyrbekov, G.A., Batyrbekov, E.G., Dolgikh, V.A., Khasenov, M.U., Rudoi, I.G., Soroka, A.M. & Tleuzhanov, A.B. (1987). Feasibility of construction of a quasi-cw laser utilizing 7s-6p transitions in mercury pumped by ionizing radiation. Sov. J. Quantum Electron. 17, 774775.CrossRefGoogle Scholar
Batyrbekov, G.A., Batyrbekov, E. G., Dolgikh, V.A., Khasenov, M.U., Rudoi, I.G., Soroka, A.M. & Tleuzhanov, A.B. (1988). Luminescence of the mixtures of mercury and rare gases containing molecular additives with excitation by the ionizing radiation. J. Appl. Spectrosc. (Sov. J.) 49, 11391143.CrossRefGoogle Scholar
Batyrbekov, G.A., Batyrbekov, E.G., Danilychev, V.A. & Khasenov, M.U. (1990). Efficiency of populating neon 3p-levels under ionized pumping. Opt. Spectrosc. (Sov. J.) 68, 12411245.Google Scholar
Benck, E.C., Lawler, J.E. & Dakin, J.T. (1989). Lifetimes, branching ratios, and absolute transition probabilities in Hg I. J. Opt. Soc. of Am. B 6, 1122.CrossRefGoogle Scholar
Bochkov, A.V., Kryzhanowskii, V.A., Magda, E.P., Mukhin, S.L., Murzin, V.M. & Neznakhina, A.E. (1992). Quasi-cw lasing on the 73S1-63P2 atomic mercury transition. Techn. Phys. Lett. 18, 241243.Google Scholar
Burstein, M.L., Komarovskii, V.A., Fedorov, A.N. & Yurgenson, S.V. (1991). The study of quenching of the excited 2-p-levels of neon atoms with molecular hydrogen and argon. Opt. Spectrosc. 71, 240242.Google Scholar
Collins, C.B. & Lee, F.W. (1979). Measurement of the rate coefficients for the bimolecular and termolecular ion-molecule reactions of Ar2+ with selected atomic and molecular species. J. Chem. Phys. 71, 184191.CrossRefGoogle Scholar
Collins, C.B. & Lee, F.W. (1980). Measurement of the rate coefficients for the bimolecular and termolecular ion-molecule reactions of Nе2+ with selected atomic and molecular species. J. Chem. Phys. 72, 53815389.CrossRefGoogle Scholar
Denezhkin, I.A. & D'yachenko, P.P. (2009). Population and relaxation kinetics of 5d[3/2]1 level upon pulsed electron-beam excitation of pure xenon. Quan. Electron. 39, 135138.CrossRefGoogle Scholar
Denezhkin, I.A. & D'yachenko, P.P. (2013). Luminescence from the laser transition 5d[3/2]1-6p[3/2]1 of atomic xenon upon excitation of He-Ar-Xe mixture by a pulsed electron beam of short duration. Opt. Spectrosc. 114, 183188.CrossRefGoogle Scholar
Fedenev, F.V. & Tarasenko, V.F. (1998). Simulation of NPL in experiments with e-beam pumping. Laser Part. Beams 16, 327380.CrossRefGoogle Scholar
Gorbunov, V.V., Grigor'ev, V.D., Dovbysh, L.E., Mel'nikov, S.P., Sinitsyn, A.V., Sinjanskii, A.A. & Tsetkov, V.M. (2004). The luminescence spectra in the 350–875 nm range of the dense gas excited by uranium fission fragments. Proc. RFNC-VNIIEF 6, 148185, [in Russian].Google Scholar
Hebner, G.A. (1993). Fission-fragment excitation of the high-pressure atomic neon laser at 703.2 and 724.5 nm. J. Appl. Phys. 74, 22032207.CrossRefGoogle Scholar
Hebner, G.A. (1995). Gas temperature dependent output of the atomic argon and xenon lasers. IEEE J. Quan. Electron. 31, 16261631.CrossRefGoogle Scholar
Johnsen, R., Macdonald, J. & Biondi, A. (1978). Thermal energy charge transfer rates for Ne+, Ne2+, Ar+ and Ar2+ ions with Kr and Xe atoms. J. Chem. Phys. 68, 29912992.CrossRefGoogle Scholar
Karelin, A.V. & Yakovlenko, S.I. (1995). Kinetic model of an He-Ne-Ar-H2 laser pumped by hard ionising radiation. Quan. Electron. 25, 739745.CrossRefGoogle Scholar
Kebarle, P., Haynes, R.M. &. Searles, S.K. (1967). Mass-spectrometric study of ions in Xe, Kr, Ar, Ne at pressures up to 40 torr: Termolecular formation of the rare-gas molecular ions. Bond dissociation energy of Ar2+ and Ne2+. J. Chem. Phys. 47, 16841691.CrossRefGoogle Scholar
Khasenov, M.U. (2004). Emission of the 3He-Xe-Cd mixture in the active zone of a nuclear reactor. Quan. Electron. 34, 11241126.CrossRefGoogle Scholar
Khasenov, M.U. & Smirnova, I.I. (2008). Possible use of ion-ion recombination in nuclear pumped laser. Proc. SPIE 6938, 69380J.Google Scholar
Khasenov, M.U. (2014). Optical emission of the nuclear-induced plasmas of gas mixtures. Internation. J. Opt. 748763.Google Scholar
Klopovskii, K.S., Lukyanova, A.V., Rakhimov, A.V. & Suetin, N.V. (1989). Numerical simulation of an atomic xenon laser. Sov. J. of Quant. Electron. 19, 133137.CrossRefGoogle Scholar
Lindiger, W., Schmeltekopf, A.L. & Fehsenfeld, F.C. (1974). Temperature dependence of de-excitation rate constants of He(23S) by Ne, Ar, Xe, H2, N2, O2, NH3 and CO2. J. Chem. Phys. 61, 28902895.CrossRefGoogle Scholar
Magda, E.P. (1993). Analyses of experimental and theoretical research of nuclear pumped lasers at the Institute of Technical Physics. Laser Part. Beams 11, 469476.CrossRefGoogle Scholar
Mavlyutov, A.A., Mis'kevich, A.I. & Salamakha, B.S. (1993). Nuclear pumping of Ne-O2 and Ar-I2 mixtures. Laser Phys. 3, 103109.Google Scholar
Mayhev, C.A. (1992). Reactions of Ne+ and Ne2+ ions with several molecular species at 300 K: The importance of energy resonance, Franck-Condon factors and electron correlation effects on reaction efficiencies. J. Phys. B: At. Mol. Opt. Phys. 25, 18651881.Google Scholar
Mel'nikov, S.P., Sizov, A.N. & Sinyanskii, A.A. (2008). Nuclear Pumped Lasers. Sarov: VNIIEF [in Russian].Google Scholar
Ohwa, M., Moratz, T.J. & Kushner, M.J. (1989). Excitation mechanisms in electron beam pumped atomic xenon (5d-6p) laser in Ar/Xe mixtures. J. Appl. Phys. 66, 51315145.CrossRefGoogle Scholar
Peters, P.J.M., Mei, Qi-Chu & Witterman, W.J. (1989). Pressure-dependent optical delay time measurements in a coaxial electron beam pumped Ar:Xe laser. Appl. Phys. Lett. 54, 193195.CrossRefGoogle Scholar
Poletaev, E.D., Dorofeev, Yu.B., D'yachenko, P.P., Kopay Gora, A.P., Mavlyutov, A.A., Mis'kevich, A.I. & Salamakha, B.S. (1992). Emission characteristics of high-pressure pure neon and He-Ne mixture excited by nuclear particles. Techn. Phys. 62, 18.Google Scholar
Ramos, G.B., Schlamkovitz, M., Sheldon, J., Hardy, K.A. & Peterson, J.R. (1995). Observation of dissociative recombination of Ne2+ and Ar2+ directly to the ground state of the product atoms. Phys. Rev. A 51, 29452950.CrossRefGoogle Scholar
Rhoades, R.A. & Verdeyen, J.T. (1992). Electron beam pumping of the 546.1 nm mercury laser. Appl. Phys. Lett. 60, 29512953.CrossRefGoogle Scholar
Skrobol, C., Heindl, T., Krücken, R., Morozov, A., Steinhübl, R., Wieser, J. & Ulrich, A. (2009). A miniature electron beam pumped laser. European Phys. J. D 54, 103109.CrossRefGoogle Scholar
Shneider, R.T. & Hohl, F. (1984). Nuclear pumped lasers. In Advances in Nuclear Science and Technol (Lewis, J. and Becker, M., Eds.), Vol. 16, pp. 123287, New York: Plenum Press.CrossRefGoogle Scholar
Shon, J.W., Rhodes, R.L., Verdeyen, J.T. & Kushner, M.J. (1993 a). Short pulse electron beam excitation on the high-pressure atomic Ne laser. J. Appl. Phys. 73, 80598065.CrossRefGoogle Scholar
Shon, J.W., Kushner, M.J., Hebner, J.A. & Hays, J.N. (1993 b). Predictions for gain in the fission-fragment-excited atomic xenon laser. J. Appl. Phys. 73, 26862694.CrossRefGoogle Scholar
Shon, J.W. & Kushner, M.J. (1994). Excitation mechanisms and gain modeling of the high pressure atomic Ar laser in He/Ar mixtures. J. Appl. Phys. 75, 18831890.CrossRefGoogle Scholar
Shul, R.J., Passarella, R., Upschulte, B.L., Keesee, R.G. & Castleman, A.W. Jr. (1987). Thermal energy reactions involving Ar+ monomer and dimer with N2, H2, Xe, and Kr. J. Chem. Phys. 86, 44464451.CrossRefGoogle Scholar
Smirnov, B.M. (1982). Excited Atoms. Moscow: Energoatomizdat [in Russian].Google Scholar
Ulrich, A. (2012). Light emission from the particle beam induced plasma: An overview. Laser Part. Beams 30, 199205.CrossRefGoogle Scholar
Ulrich, A., Adonin, A., Jacoby, J., Turtikov, V., Fernengel, D., Fertman, A., Golubev, A., Hoffmann, D.H.H., Hug, A., Krucken, R., Kulish, M., Menzel, J., Morozov, A., Ni, P., Nikolaev, D.N., Shilkin, N.S., Ternovoi, V.Ya., Udrea, S., Varentsov, D. & Wieser, J. (2006). Excimer laser pumped by an intense, high-energy heavy-ion beam. Phys. Review Lett. 97, 153901.CrossRefGoogle ScholarPubMed
Voinov, A.M., Krivonosov, V.N., Mel'nikov, S.P., Pavlovskii, A.I. & Sinyanskii, A.A. (1990). Quasi-cw lasing on 3p-3s transitions of neon atom upon excitation of inert gases by uranium fission fragments. Sov. Physics Doklady 35, 568571.Google Scholar
Zagidulin, A.V., Bochkov, A.V., Mironenko, V.V. & Sofienko, G.S. (2012). A 500-J nuclear-pumped gas laser. Techn. Phys. Lett. 38, 10591062.CrossRefGoogle Scholar