Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-07T15:24:15.097Z Has data issue: false hasContentIssue false

Mono-energetic ions from collisionless expansion of spherical multi-species clusters

Published online by Cambridge University Press:  22 April 2009

K.I. Popov*
Affiliation:
Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta, Canada
V.Yu. Bychenkov
Affiliation:
Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta, Canada P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
W. Rozmus
Affiliation:
Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta, Canada
V.F. Kovalev
Affiliation:
Institute for Mathematical Modelling, Moscow, Russian Academy of Sciences, Moscow, Russia
R.D. Sydora
Affiliation:
Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta, Canada
*
Address correspondence and reprint requests to: K.I. Popov, Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta, Canada. E-mail: kpopov@phys.ualberta.ca

Abstract

Kinetic collisionless expansion of a spherical cluster composed of light and heavy cold ions and hot electrons is studied for arbitrary electron temperature. A wide set of regimes of plasma expansion, from nearly quasi-neutral to Coulomb explosion, is described from a unified description. The time evolution of the velocity, density, and energy spectra for accelerated ions is studied. The study demonstrates that an optimum light ion concentration from few percent to few tens percent, depending on the electron temperature, leads to a quasi-monoenergetic spectra with numbers as high as 70–80% of the total number of light ions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T.M. Jr., Taguchi, T., Gupta, A., Palastro, J. & Milchberg, H.M. (2005). Resonant heating of a cluster plasma by intense laser light. Phys. Plasmas 12, 056703.Google Scholar
Chvykov, V., Rousseau, P., Reed, S., Kalinchenko, G. & Yanovsky, V. (2006). Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 31, 14561458.Google Scholar
Ditmire, T., Springate, E., Tisch, J.W.G., Shao, Y.L., Mason, M.B., Hay, N., Marangos, J.P. & Hutchinson, M.H.R. (1998). Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57, 369382.CrossRefGoogle Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nat. 398, 489492.CrossRefGoogle Scholar
Dorozhkina, D.S. & Semenov, V.E. (1998). Exact solution of Vlasov equations for quasineutral expansion of plasma bunch into vacuum. Phys. Rev. Lett. 81, 26912694.CrossRefGoogle Scholar
Dunne, M. (2006). A high-power laser fusion facility for Europe. Nat. Physi., 2, 25.CrossRefGoogle Scholar
Esirkepov, T., Bingham, R., Bulanov, S., Honda, T., Nishihara, K. & Pegoraro, F. (2000). Coulomb explosion of a cluster irradiated by a high intensity laser pulse. Laser Part. Beams 18, 503506.CrossRefGoogle Scholar
Kaplan, A.E., Dubetsky, B.Y. & Shkolnikov, P.L. (2003). Shock shells in Coulomb explosions of nanoclusters. Phys. Rev. Lett. 91, 143401.Google Scholar
Kiriyama, H., Mori, M., Nakai, Y., Shimomura, T., Tanoue, M., Akutsu, A., Okada, H., Motomura, T., Kondo, S., Kanazawa, S., Sagisaka, A., Ma, J., Daito, I., Kotaki, H., Daido, H., Bulanov, S., Kimura, T., & Tajima, T. (2009). Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system. Opt. Comm., 282, 625628.CrossRefGoogle Scholar
Kovalev, V.F. & Bychenkov, V.Yu. (2003). Analytic solutions to the Vlasov equations for expanding plasmas. Phys. Rev. Lett. 90, 185004.Google Scholar
Kovalev, V.F. & Bychenkov, V.Yu. (2005). Kinetic Description of the Coulomb explosion of a spherically symmetric cluster. JETP 101, 212223.CrossRefGoogle Scholar
Kovalev, V.F., Bychenkov, V.Yu. & Mima, K. (2007 a). Quasimonoenergetic ion bunches from exploding microstructured targets. Phys. Plasmas 14, 103110.CrossRefGoogle Scholar
Kovalev, V.F., Popov, K.I., Bychenkov, V.Yu. & Rozmus, W. (2007 b). Laser triggered Coulomb explosion of nanoscale symmetric targets. Phys. Plasmas 14, 053103.CrossRefGoogle Scholar
Krainov, V.P. & Smirnov, M.B. (2002). Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370, 237331.CrossRefGoogle Scholar
Last, I. & Jortner, J. (2001). Nuclear fusion induced by Coulomb explosion of heteronuclear clusters. Phys. Rev. Lett. 87, 033401.Google Scholar
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Sci. 300, 11071111.CrossRefGoogle ScholarPubMed
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Yu. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26, 225234.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, T., Schnurer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.Google Scholar
Murakami, M. & Tanaka, M. (2008). Nanocluster explosions and quasimonoenergetic spectra by homogeneously distributed impurity ions. Phys. Plasmas 15, 082702.CrossRefGoogle Scholar
Nishihara, K., Amitani, H., Murakami, M., Bulanov, S.V. & Esirkepov, T.Zh. (2001). High energy ions generated by laser driven Coulomb explosion of cluster. Nucl. Instrum. Meth. Phys. Res. A 464, 98102.CrossRefGoogle Scholar
Peano, F., Fonseca, R.A. & Silva, L.O. (2005). Dynamics and control of shock shells in the Coulomb explosion of very large deuterium clusters. Phys. Rev. Lett. 94, 033401.CrossRefGoogle ScholarPubMed
Peano, F., Peinetti, F., Mulas, R., Coppa, G. & Silva, L.O. (2006). Kinetics of the collisionless expansion of spherical nanoplasmas. Phys. Rev. Lett. 96, 175002.Google Scholar
Ter-Avetisyan, S., Schnürer, M., Nickles, P.V., Kalashnikov, M., Risse, E., Sokollik, T., Sandner, W., Andreev, A. & Tikhonchuk, V. (2006). Quasimonoenergetic deuteron bursts produced by ultraintense laser pulses. Phys. Rev. Lett. 96, 145006.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnürer, M., Nickles, P.V., Smirnov, M.B., Sandner, W., Andreev, A., Platonov, K., Psikal, J. & Tikhonchuk, V. (2008). Laser proton acceleration in a water spray target. Phys. Plasmas 15, 083106.Google Scholar
Thaury, C., Quéré, F., Geindre, J.-P., Levy, A., Ceccotti, T., Monot, P., Bougeard, M., Réau, F., d'Oliveira, P., Audebert, P., Marjoribanks, R. & Martin, Ph. (2007). Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424429.Google Scholar
Zweiback, J., Smith, R.A., Cowan, T.E., Hays, G., Wharton, K.B., Yanovsky, V.P. & Ditmire, T. (2000). Nuclear fusion driven by Coulomb explosions of large deuterium clusters. Phys. Rev. Lett. 84, 26342637.Google Scholar