Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-23T03:23:40.787Z Has data issue: false hasContentIssue false

Monte–Carlo simulations of fusion kinetic processes used to evaluate diagnostic techniques for laser target plasma

Published online by Cambridge University Press:  16 October 2009

S. Yu. Gus'kov
Affiliation:
Lebedev Physical Institute, Leninsky Pr. 53, Moscow, Russia
D. V. Il'in
Affiliation:
Department of Physics, Institute of Machine Building of St.-Petersburg, Polustrovsky 14, St.-Petersburg 195108, Russia
A. A. Levkovsky
Affiliation:
Department of Physics, Institute of Machine Building of St.-Petersburg, Polustrovsky 14, St.-Petersburg 195108, Russia
V. B. Rozanov
Affiliation:
Lebedev Physical Institute, Leninsky Pr. 53, Moscow, Russia
V. E. Sherman
Affiliation:
Department of Physics, Institute of Machine Building of St.-Petersburg, Polustrovsky 14, St.-Petersburg 195108, Russia
O. B. Vygovsky
Affiliation:
Department of Physics, Institute of Machine Building of St.-Petersburg, Polustrovsky 14, St.-Petersburg 195108, Russia

Abstract

Review and systematization of our investigations in thermonuclear (TN) plasma particle diagnostic methods are presented. The proposed diagnostic schemes are based on direct numerical simulations of nuclear reaction products kinetics in a dense hot plasma with the following interpretation of the results by means of analytical scaling relations for charged particles energy loss in plasma with arbitrary degeneration of electron gas. The simulations of the kinetic equations system solution for TN particles is carried out by TERAcode based on Monte–Carlo method. The diagnostic schemes are presented in the form of families of isoline curves at the (ρR, T)-plane which are related to the constant values of measured spectrum characteristics. The searching plasma parameters ρR and temperature T are determined by points of interceptions of curves related to the distinct characteristics. The ranges of applicability of different methods of particle diagnostics are investigated in detail.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azechi, H. et al. 1986 J. Appl. Phys. 49, 555.Google Scholar
Basov, N.G. et al. 1972 JETP Lett. 15, 589.Google Scholar
Basov, N.G. et al. 1980 Sov. J. of Plasma Physics 6, 90.Google Scholar
Basov, N.G. et al. 1983 JETP Lett. 37, 109.Google Scholar
Basov, N.G. et al. 1985 Prepr. 132 (Lebedev Phys. Inst., Moscow).Google Scholar
Basov, N.G. et al. 1986 Sov. J. of Plasma Physics 12, 916.Google Scholar
Burtzev, V.A. et al. 1993 Laser and Part. Beams 11, 669.CrossRefGoogle Scholar
Cable, M.D. et al. 1992 Rev. Sci. Instr. 63, 4823.CrossRefGoogle Scholar
Cable, M.D. et al. 1994 Phys. Rev. Lett. 73, 2316.CrossRefGoogle Scholar
Cooper, R.S. & Evans, F. 1975 Phys. of Fluids 18, 332.CrossRefGoogle Scholar
Gamaly, E.G. et al. 1975 JETP Lett. 21, 70.Google Scholar
Gus'kov, S.Yu. 1987 Sov. J. of Plasma Physics 13, 407.Google Scholar
Gus'kov, S.Yu. & Rozanov, V.B. 1982 In Proceedings of Lebedev Physical Inst. (Moscow), 134, 115 (in Russian).Google Scholar
Gus'kov, S.Yu. & Rozanov, V.B. 1976 Brief Comm. in Phys. 4, 36 (in Russian).Google Scholar
Gus'kov, S.Yu. et al. 1974 Kvantovaya Elektronika 1, 2488 (Engl. transl. Sov. J. of Quant. Electr. Vol. 4).Google Scholar
Gus'kov, S.Yu. et al. 1975 Kvantovaya Elcktronika 2, 2315 (Engl. transl. Sov. J. of Quant. Electr. Vol. 5).Google Scholar
Gus'kov, S.Yu. et al. 1985 Sov. J. of Plasma Physics 11, 684.Google Scholar
Gus'kov, S.Yu. et al. 1987 a 18-th ECLIM, Paper abstr., 183.Google Scholar
Gus'kov, S.Yu. et al. 1987 b 18-th ECLIM, Paper abstr., 184.Google Scholar
Gus'kov, S.Yu. et al. 1990 Sov. J. of Plasma Physics 16, 587.Google Scholar
Il'in, D.V. et al. 1986 Sov. J. of Plasma Physics 12, 868.Google Scholar
Krokhin, O.N. & Rozanov, V.B. 1972 Kvantovaya Elcktronika 4, 118 (Engl. transl. Sov. J. of Quant. Electr. Vol. 7).Google Scholar
Kilkenny, J.D. 1992 Rev. Sci. instr. 63, 4688.CrossRefGoogle Scholar
Storm, E.K. 1976 Exploding Pusher Targets: Summary. Laser program annual report, Lawrence Laboratory, UCRL-50021–76.Google Scholar
Vygovsky, O.B. et al. 1984 a Prepr. 72 (Lebedev Phys. Inst., Moscow).Google Scholar
Vygovsky, O.B. et al. 1984 b Prepr. 73 (Lebedev Phys. Inst., Moscow).Google Scholar
Vygovsky, O.B. et al. 1990 Prepr. 72 (Lebedev Phys. Inst., Moscow).Google Scholar
Vygovsky, O.B. et al. 1986 Kvantovaya Elektronika 13, 437 (Engl. transl. Sov. J. of Quant. Electr. Vol. 16).Google Scholar